IDENTITIES INVOLVING HARMONIC NUMBERS THAT ARE OF
INTEREST FOR PHYSICISTS

HELMUT PRODINGER

ABSTRACT. We treat a class of combinatorial sums considered by Vermaseren [8] with an
elementary approach. The resulting evaluations are in terms of (generalized) harmonic
numbers.

1. INTRODUCTION

In this paper, we deal with harmonic sums, defined by

Y =3
k=1

Vermaseren [8] presented an algorithm to deal with harmonic numbers, since they are
of interest in physics contexts. In his section “Miscellaneous Sums” he writes:

In this section some sums are given that can be worked out to any level of
complexity, but they are not representing whole classes. Neither is there any
proof for the algorithms. The algorithms presented have just been checked
up to some rather large values of the parameters.

In this paper, these (classes!) of identities are treated with different methods, which are
very simple and convincing. Basically, partial fraction decomposition is enough! I learned
this technique from Wenchang Chu [1]. It avoids complex analysis (“Rice’s method”) that
is often associated with alternating sums involving binomial coefficients, see, e.g., [2].

The next 3 sections treat the classes of identities in question.

Then we consider a related sum in the spirit of Kirschenhofer [4], as well as a sum of
Melzik et al., [7, 6].

2. A FIRST SET OF IDENTITIES

We perform the following partial fraction decomposition:
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Now we multiply this by z, and take the limit z — oc:
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[Zd](l—i-z)...(l—i—%)
(1—-2)...(1-2)
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= [2% exp log(1+z)+~~~+log<1+§)+log1_z+--~+log1_ >
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1j1+3jg+=d
So we have our first result:

Theorem 1.

n G143 (1)\7 (3)\J3
O
k k kd jl!]g!...1]1333...

k=1 1-5143-j3+=d

The polynomials on the right-hand-side can be expressed in the language of Bell poly-
nomials; see, e.g., [5].
Here is a list for d = 1,2, 3,4, 5 of these polynomials:

2H,, 2H? éHj’; + EHS’), gﬂg + éHnH,Sf”), iﬂg + %HiH,(f’) + 2H7§5>.
3 3 3 3 15 3 5

3. A SECOND SET OF IDENTITIES

Consider the following partial fraction decomposition

(z41)...(2+n) {1 1 ]

2(z=1).. . (z—n)|j?  (G+2)
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—Z( )(Hk) l)n_k[jdil B (J'Jif)d“}zik:Jr (j+Az)d+1 Pt

Again, we multiply by z, and take the limit z — oc:

1 "\ (n\ (n+k ol 1 1 1
F:Z(k)( k )(_1) [jdﬂ‘(ﬁk)d“}*“jd?’
k=0

with
(s ) (+1D...(z4+n) [ 1 1
=) T e e
(st i) (z+1)...(z+n) 1
=-lz+J) ]z(z—l)...(z—n)(j—i—z)d+1
C (st ) (z+1)...(z+n)
=l +j)]z(z—1)...(z—n)
_ [ (z+1—j)...(z4+n—17)

(z=)z—1=j)...(z=n—j)
So we get

3 e =

and by summing over j > 1:

é <Z) (nzk>(_1)nkﬂéd+1) iy Z(_ L, . _(?;Ezl:iy)_j)(ern—J) . )

2\ NCETET)
Now define L .
) = e e,
and |
oln,3) = Fln, ) A=Y,
then

So, for d > 1 we can continue

S () o - s o)
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Y (gm.3) = gm. j +1))

m=0 j>1
n—1

= [z g(m,1)

m=0

:_2[Zd]zl z...(z+m—1)

—m(z-1)(z=2)...(z =m)

i ()t (I 42) (1 + 25)
BRI D e (e o ey

m=1

~ (="' (8m,1)" (Sm,2)"2 -
N QmZI m? l1+2l2+Z:d1 llllz. o 12k
with
Smj = (—1)"HY | + HY),
For d = 0, the modified computation goes like this:

SOy o (to 1)

) ;mzz (9m. ) = g(m.j+1)

~ Jim [ mé; (90m.5) — glm.j + 1))
~ lim [ ::; g(m.1) = g(m. J + 1)
s 2o,

Theorem 2. Ford > 1,

- n n+k _1\n—k zr(d+1) _ - (_1)m—1 (Sm,l)ll(sm,Z)b---
;(k)( k >( DT =2 m? 2 !, 12k

m=1 Iy +2ly+-=d—1
with

Smg = (=1 HJL + HY.
Ford =0,

G

k=0
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For instance we get for d = 3

(=1t s 28m.3
Z m2 3 +Sm,1sm,2+ 3 .

m=1

All the appearing quantities could be rewritten in terms of some standardized sums:

et e
a1 © g
1<j1 < <gn<n I Ih
with ¢; € {£1} and some natural numbers a;.
4. A THIRD SET OF IDENTITIES

Consider for 0 < m < n the following partial fraction decomposition:
(m+1+2)...(n+2) nl 1
2(z—=1)...(z=n) (n—m)! (m+ z)d+!

_55 n\ (n+k (1) 1 L A P
_k:O k) \m+k (m4+ k) z—k  (m+ z)¢H! m+ z

and the limit of z - T for z — oo

-2 () G

k=0

T :=

with
(m+1+2)...(n+2) nl 1
2(z—=1)...(z=n) (n—m)! (m+ z)*+!
(m+142)...(n+2)
2(z=1)...(z—n)

n! X (14+2)...(n—m+ 2)
(n—m)l" (z=m)(z—1—m)...(z—n—m)
n!(m — 1)1(—=1)"! y (1+2)...(1+ =)

(n+m)! (1= =5 (-5

_ nl(m — D=1 Ed exp<i log(1 + é) T Z log i ->

|
(n+m)! — Pt :

_ nl(m — D=1 4 exp <Z zjgj)

(n+m)! =

p=m+2)"

= T f(m+2)"

with

5
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This leads to

Iu’:

nl(m — 1)(—1)" 5 ()" ()" ...
(TL + m)' I+ 200t —d lllg! 3
Theorem 3.
n I A
Z n\ (n+k (—1)* 1 ~ nl(m—1)! Z (U1) " (Us) ...
k) \m+k (m+ k) (n+m)! dlllg!...lll2l2...7

k=0 l14+2lp+4=

with ' ‘ ' ‘

Uy = (=1 B, + B, — HL
Remark 1. An almost identical computation gives for integers 0 < p < m < n the
following formula: (p = m is the previous result.)

i(nxnw)(_l)k( L alln—p)p—Di(=1)"" ()" ()" ...

k) \m+k p+ k) (m—p)(n—m)(p+n) dl1l2!...1l1252...’

k=0
with

li+2lp+=
U= (-1 1Y, — (1" + HY), — HY,.
5. IDENTITIES IN THE SPIRIT OF KIRSCHENHOFER
Kirschenhofer [4] has found identities for sums

>, () e

0<k<n, k#M
where M is an integer with 0 < M < n. We are now investigating the analogous sum
> W)=
0<k<n, k#£M
Of course, we start from
(z4+1)...(z+n) 1
2(z—=1)...(z—n) (z — M)¥’

write it in partial fraction decomposition, multiply by z, and consider the limit z — oo,

with the result
n\ /n+k —k 1
o= 3 ()0 g e

0<k<n, k£M

T :=

with

(z4+1)...(z+n) 1

2(z=1)...(z—=n)(z — M)?
(z+1)...(24+n)

2z=1)...z-M+1)-(z—=M-=1)...(2—n)

(=1 = (=1)"[(z = M)~
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(z+M+1)...(z4+ M +n)

(z+M)...(2z+1)-(z=1)...(2+ M —n)

M!MY(n — M)! A4+5). - AI+2)-1=2)...(1-5)

= D —)M)! [+ exp (Z ?Zk)

= (~1)"[]

— (-

E>1
with
se = (=0 (B, - 20 )) + 1Y,
Hence
n\ /[n+k B 1
Z (_1)k ' _ d
0<k<n, kAM

= (1M (M +n)! Z (Sl)jl (32)j2 e
B M!M!(n — M)! Jilgol .. 1202
J1+2j2+=d

Once again here is the comment that one could write the result in the terminology of Bell
polynomials.

6. A SUM BY MELZAK ET AL.

The sum in question appears in [7, 6], viz.

s =o("1") Z (7)o f=h,

with a polynomial f(z) of degree < n. (Compare also [3].)
This formula, too, can easily be derived by partial fraction decomposition:

n! flz—2)
2(z—=1)...(z—n) y+=z

:i@(_l)nk( fe—k) w0 faty)

y+k)z—k) yly+1)...(y+n) y+=z

(The degree restriction is essential here, otherwise there would be extra polynomial terms.)
Now we multiply, as usual, by z, and perform the limit z — oc:

0— Z (n) (_1>n7kf(x — k) N n!(=1)" M f(x +y)

k y+k yly+1)...(y+n)

k=0

This is already the desired formula, after rewriting it.
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