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ABSTRACT. We present enumeration results ford-ary trees whose vertices are coloured by
k colours in a specific way. Besides generating functions proofs of these results we also give
direct bijections between these coloured trees and uncolouredd-ary trees.

1. INTRODUCTION AND RESULTS

We are dealing here withd-ary trees, which are amongst the most fundamental tree struc-
tures with applications, e.g., in combinatorics, computer science and biology, see, e.g.,
[1, 3, 4, 8].

A d-ary tree is either an empty tree or it consists of a root node, to which an ordered
sequence of exactlyd subtrees is attached that are itselfd-ary trees. We denote the family
of d-ary trees byTd and the empty tree byε. In particular in the computer science related
literature one sometimes uses instead of the symbolε the notion of external nodes with a
certain symbol distinguishable from the proper nodes, called internal nodes. Each nodev in
the tree has then exactlyd children attached tov and we may speak of the first child, . . . , the
d-th child, where we have to allow “empty children”ε. This recursive description can also
be expressed via the following formal equation forTd, where∪̇ denotes the disjoint union of
two combinatorial families:

Td = ε ∪̇ 1
2

d

Td Td · · · Td

(1)

It is well known and can be shown in many ways that the numberT
(d)
n of d-ary trees of size

n, where the size|T | of a treeT is here always measured by its number of nodes, is given by
the generalized Catalan numbers:

T (d)
n =

1

(d− 1)n + 1

(
dn

n

)
, for n ≥ 0. (2)
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2 A. PANHOLZER AND H. PRODINGER

For the special instanced = 2, i.e., binary trees where each node has a left and a right
child, several studies of certain subclasses of two-coloured binary trees appeared. In two-
coloured binary trees the nodes in the tree are coloured either black or white. In [2, 5, 6]
remarkable enumeration formulæ and relations between subclasses of two-coloured trees,
where restrictions on the colours of two connected nodes are made, and other combinatorial
objects are obtained. In particular in [2, 6] it has been shown in a bijective way that the
number of -free two-coloured binary trees with a black root and of sizen ≥ 1 are equal to
the number of (uncoloured) ternary trees of sizen. Here a two-coloured binary tree is called

-free, when there is no edge occurring in the tree that connects a parent coloured black
with a right child coloured white. The bijection presented in [6] gives a procedure, which
is easy to implement and that allows to encode (and decode) a ternary tree by a-free
two-coloured binary tree with a black root of the same size.

This motivated us to have a closer look on relations between certain subclasses of coloured
trees and uncoloured trees, leading to generalizations in two directions: first we deal now
with arbitraryd-ary trees, ford ≥ 2, and second we considerk-coloured trees (ork-labelled
trees), i.e., there is a set ofk colours (or labels),k ≥ 2, and each node in a tree has a colour
(label) from this set.

Although we could deal directly withk-colouredd-ary trees, we will present our general-
izations in two steps, which should improve the readability: first we consider two-coloured
d-ary trees, and only then we consider the general case ofk-labelledd-ary trees.

So, first we deal with two-colouredd-ary trees, where the nodes in a tree are coloured
either black or white. We introduce here the notion of-free two-colouredd-ary trees
(by generalizing the definiton for binary trees), whose meaning is now, that there is no edge
occurring in the tree that connects a parent coloured black with ad-th child (i.e., the rightmost
child) coloured white. The family of -free two-colouredd-ary trees with a black root is
denoted here byBd. An example of a tree inB3 is given in Figure 1.

We state now our enumeration result for trees inBd of a given size, which relates black-
rooted -free two-colouredd-ary trees with ordinary(2d− 1)-ary trees.

Theorem 1. The numberB(d)
n of trees inBd of sizen ≥ 1 is equal to the numberT (2d−1)

n of
trees inT2d−1 of sizen and is thus given by

B(d)
n =

1

(2d− 2)n + 1

(
(2d− 1)n

n

)
.

Next we consider the general case ofk-colouredd-ary trees, where we have a set ofk
colours. For simplicity in presentation we use the set of colours{1, 2, . . . , k} and consider
thusd-ary trees, which are labelled with labels from{1, 2, . . . , k}.

We introduce now the notion ofi j
> -freek-colouredd-ary trees, whose nodes are labelled

with labels from the set{1, 2, . . . , k} in such a way that each node labelledi, 1 ≤ i ≤ k, does
not have ad-th child labelledj < i. We denote byGd,k the family of i

j
> -freek-coloured

d-ary trees.
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FIGURE 1.

An example of a -free two-coloured binary tree of size14 with a black root
and an example of ai

j
> -free3-coloured ternary tree of size20.
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For an arbitrary labelled or unlabelledd-ary treeT we define therightmost pathof T as
the pathv0, . . . , vr, wherev0 is the root ofT , vi, for 1 ≤ i ≤ r, is thed-th child of vi−1, and
vr only has an emptyd-th child. We can give then an alternative definition of the familyGd,k

as the family ofk-colouredd-ary treesT with the property, that the rightmost path of any
subtree ofT consists of a sequence of non-decreasing labels. An example of a tree inG3,3 is
given in Figure 1.

We state now our first enumeration result for trees inGd,k of a given size, which relates
the subclass ofi

j
> -freek-colouredd-ary trees whose roots are labelled byk with ordinary

(k(d− 1) + 1)-ary trees.

Theorem 2. The numberG[k]
n of those trees inGd,k of sizen ≥ 1 whose roots are labelled by

k is equal to the numberT (k(d−1)+1)
n of trees inTk(d−1)+1 of sizen and is thus given by

G[k]
n =

1

k(d− 1)n + 1

(
(k(d− 1) + 1)n

n

)
.

Of course, Theorem 1 follows from Theorem 2, where we identify a white node with label
1 and a black node with label2.

As a corollary we obtain a second enumeration result for trees inGd,k of a given size,
which relates the whole set ofi j

> -free k-colouredd-ary trees withk-tuples of ordinary
(k(d− 1) + 1)-ary trees.

Corollary 1. The numberGn of trees inGd,k of sizen ≥ 0 is equal to the number ofk-tuples
(T1, . . . , Tk) of trees inTk(d−1)+1 with total size|T1|+ · · ·+ |Tk| = n and is thus given by

Gn =
k

k(d− 1)n + k

(
(k(d− 1) + 1)n + k − 1

n

)
.

For all our results we give a proof via generating functions, but furthermore we also
present bijective proofs for our findings. E.g., when considering the special instance of
k-coloured binary trees, our bijection gives a procedure, which is easy to implement and that
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allows to encode (and decode) a(k + 1)-ary tree by a i
j

> -freek-coloured binary tree with
a root node labelled byk of the same size.

A proof of Theorem 1 is given in Section 2, whereas Theorem 2 and Corollary 1 are proven
in Section 3.

2. TWO-COLOUREDd-ARY TREES

2.1. A generating functions proof of Theorem 1. We begin by stating the well-known
fact that the generating functionTd(z) =

∑
n≥1 T

(d)
n zn of non-emptyd-ary trees satisfies the

functional equation
Td(z) = z(1 + Td(z))d. (3)

This equation can be obtained, e.g., directly from the formal equation (1), see [7] for a
description of this symbolic method. An application of the Lagrange inversion formula, see,
e.g., [8], gives then immediately the enumeration result (2) forT

(d)
n :

T (d)
n = [zn]Td(z) =

1

n
[T n−1](1 + T )dn =

1

n

(
dn

n− 1

)
=

1

(d− 1)n + 1

(
dn

n

)
. (4)

Now we are going to enumerate the numberB
(d)
n of trees inBd of sizen, i.e., of black-

rooted two-coloured -freed-ary trees. To do this we introduce the auxiliary familyWd of
two-coloured -freed-ary trees with a white root. The number of trees inWd of sizen is
denoted byW (d)

n .
Next we introduce the generating functions (where we drop the dependence of these func-

tions onz andd, for a better readability):

B :=
∑
n≥1

B(d)
n zn, and W :=

∑
n≥1

B(d)
n zn.

We use now the formal equation (1) ofd-ary trees, which gives a decomposition of a tree
according to the root node, but additionally we take into account that, for a root node coloured
black, thed-th child, if it is non-empty, must be coloured black also. This decomposition
leads then immediately to the following system of equations for the functionsB andW :

W = z(1 + B + W )d, (5a)

B = z(1 + B + W )d−1(1 + B). (5b)

Multiplying equation (5a) with(1 + B) and plugging in (5b) we obtain

(1 + B)W = z(1 + B + W )d(1 + B) = B(1 + B + W ),

which gives by subtractingBW on both sides:

W = B(1 + B). (6)

When we plug in (6) into equation(5b) we obtain the following functional equation forB:

B = z(1+B+B(1+B))d−1(1+B) = z(1+B)d−1(1+B)d−1(1+B) = z(1+B)2d−1. (7)
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Thus we obtain exactly the functional equation, which is satisfied by the generating function
T (2d−1)(z) of the number of non-empty(2d − 1)-ary treesT (2d−1)

n of sizen, see (3). This,
together with equation (4), shows then Theorem 1.

2.2. A bijective proof of Theorem 1. Consider a treeC in Bd. We will give now a simple
recursive procedure, which eventually leads to an unlabelled(2d − 1)-ary tree of the same
size.

Consider thed (possibly empty) subtreesC1, . . . , Cd of the root ofC. The basic idea is to
split each of the firstd− 1 subtreesC1, . . . , Cd−1 in exactly two (possibly empty) trees, i.e.,
the treeCi, 1 ≤ i ≤ d− 1, will be split into the pair of treesCi,1 andCi,2. This sequence of
treesC1,1, C1,2, C2,1, C2,2, . . . , Cd−1,1, Cd−1,2 together with the remaining subtreeCd will be
attached, in this order, to the (now uncoloured) root node forming the2d− 1 subtrees.

To split any subtreeCi into two parts we use thatC is -free, which gives in particular,
that the rightmost path ofCi consists of a possibly empty sequence of white nodes, followed
by a (possibly empty) sequence of black nodes. By cutting the possibly occurring edge,
which connects a white parent node with ad-th child coloured black, we obtain then the pair
of (possibly empty) treesCi,1 andCi,2, where all nodes on the rightmost path ofCi,1 are
coloured white and all nodes on the rightmost path ofCi,2 are coloured black.

When we apply this procedure recursively to all of the subtrees obtained this leads to a
(2d− 1)-ary treeT of the same size asC. An example that illustrates this procedure is given
in Figure 2.

We retain here from giving the description of the inverse procedure, since it follows from
the general case as special instancek = 2 (and the convention, that a white node corresponds
to a labelling by1 and a black node to a labelling by2), and this procedure for the general
case is presented in Subsection 3.2.

3. k-LABELLED d-ARY TREES

3.1. A proof of Theorem 2 via generating functions. We consider now the familyGd,k of
i

j
> -freek-colouredd-ary trees. Let us denote byG[i]

n , 1 ≤ i ≤ k, the number of those trees
in Gd,k of sizen ≥ 1 whose roots are labelled byi. Furthermore we introduce the generating
functions (again we drop the dependence of these functions onz andd):

G1 :=
∑
n≥1

G[1]
n zn, . . . , Gk :=

∑
n≥1

G[k]
n zn.

We use now the formal equation (1) ofd-ary trees, which gives a decomposition of a tree
according to the root node, but here we have to take into account that, for a root node labelled
i, thed-th child, if it is non-empty, must be labelled by a label from the set{i, . . . , k}. This
decomposition leads then immediately to the following system of equations for the functions
Gi, 1 ≤ i ≤ k:

G1 = z(1 + G1 + · · ·+ Gk)
d,

G2 = z(1 + G1 + · · ·+ Gk)
d−1(1 + G2 + G3 + · · ·+ Gk),
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FIGURE 2.

An illustrating example of the bijection presented between a black-rooted-free
two-coloured ternary tree of size14 and a5-ary tree of the same size. The recursive
procedure is here performed level by level, where, for a better readability, the nodes
in the resulting uncoloured5-ary tree are drawn as diamonds. We omitted here to
draw the empty subtreesε in the original tree as well as for the leaves of the resulting
tree.

The original tree. After level0.

ε

After level1.

ε

ε ε ε ε ε

After level2.

ε

ε ε ε ε ε

ε ε ε ε ε ε

The resulting tree.

ε

ε ε ε ε ε

ε ε ε ε ε ε

... (8)

Gk−1 = z(1 + G1 + · · ·+ Gk)
d−1(1 + Gk−1 + Gk),

Gk = z(1 + G1 + · · ·+ Gk)
d−1(1 + Gk).

Next we will show by induction oni that the functionsGk−i can be expressed byGk via

Gk−i = Gk(1 + Gk)
i, 1 ≤ i ≤ k − 1. (9)

First we show (9) fori = 1. To do this we multiply the(k − 1)-th equation of (8) with
1 + Gk, which gives

(1 + Gk)Gk−1 = z(1 + G1 + · · ·+ Gk)
d−1(1 + Gk)(1 + Gk−1 + Gk) = Gk(1 + Gk−1 + Gk),

and further the desired equation by subtractingGk−1Gk on both sides:

Gk−1 = Gk(1 + Gk). (10)

Now we assume that (9) holds for allj, with 1 ≤ j < i ≤ k−1. We multiply the(k−i)-th
equation of (8) with1 + Gk−i+1 + · · ·+ Gk, which gives

(1 + Gk−i+1 + · · ·+ Gk)Gk−i

= z(1 + G1 + · · ·+ Gk)
d−1(1 + Gk−i+1 + · · ·+ Gk)(1 + Gk−i + · · ·+ Gk)

= Gk−i+1(1 + Gk−i + · · ·+ Gk)
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and further by subtractingGk−iGk−i+1 on both sides:

(1 + Gk−i+2 + · · ·+ Gk)Gk−i = Gk−i+1(1 + Gk−i+1 + · · ·+ Gk). (11)

We use now the induction hypothesis and evaluate the following sum, for1 ≤ j < i:

1 + Gk−j + · · ·+ Gk = 1 + Gk +

j∑
`=1

Gk(1 + Gk)
` = 1 + Gk

j∑
`=0

(1 + Gk)
`

= 1 + Gk

(
(1 + Gk)

j+1 − 1

Gk

)
= (1 + Gk)

j+1. (12)

When we plug in (12) into both sides of equation (11) we obtain then the desired equation,
which finishes the proof of (9) by induction:

Gk−i = Gk(1 + Gk)
i. (13)

Since we have shown now equation (9) for alli, with 1 ≤ i ≤ k − 1, we can evaluate the
following sum analogous to (12) and obtain

1 + G1 + · · ·+ Gk = (1 + Gk)
k. (14)

When we plug in equation (14) into the last equation of (8) we get the following functional
equation forGk:

Gk = z(1 + Gk)
k(d−1)+1. (15)

Thus we obtain forGk exactly the functional equation, which is satisfied by the generating
functionTk(d−1)+1(z) of the number of non-empty(k(d − 1) + 1)-ary treesT (k(d−1)+1)

n of
sizen, see (3). This, together with equation (4), shows thus Theorem 2.

3.2. A bijective proof of Theorem 2. Consider a treeH in Gd,k whose root is labelled by
k. We will give now a simple recursive procedure, which eventually leads to an unlabelled
(k(d− 1) + 1)-ary tree of the same size.

Consider thed (possibly empty) subtreesH1, . . . , Hd of the root ofH. The basic idea is
again to split each of the firstd − 1 subtreesH1, . . . , Hd−1, but now in exactlyk (possibly
empty) trees, i.e., the treeHi, 1 ≤ i ≤ d − 1, will be split into ak-tuple of treesHi,1, Hi,2,
. . . , Hi,k. This sequence of treesH1,1, . . . , H1,k, H2,1, . . . , H2,k, H3,1, . . . , Hd−1,k together
with the remaining subtreeHd will be attached, in this order, to the (now uncoloured) root
node forming thek(d− 1) + 1 subtrees.

To split any subtreeHi into k parts we use that the rightmost path ofHi is i
j

> -free
and thus forming a non-decreasing sequence of labels, i.e., a possibly empty sequence of1,
followed by a (possibly empty) sequence of2, and so on, and ending by a (possibly empty)
sequence ofk. By cutting each edge on the rightmost path that is connecting two nodes
with an unequal label, we obtain then the sequence of (possibly empty) treesHi,1, . . . , Hi,k,
where all nodes on the rightmost path ofHi,` are labelled bỳ, 1 ≤ ` ≤ k.

When we apply this procedure recursively to all of the subtrees obtained this leads to a
(k(d − 1) + 1)-ary treeT of the same size asH. An example that illustrates this procedure
is given in Figure 3.
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FIGURE 3.

An illustrating example of the bijection presented between ai
j

> -free3-coloured
binary tree of size21 and a4-ary tree of the same size. The recursive procedure
is here performed level by level, where, for a better readability, the nodes in the
resulting uncoloured4-ary tree are drawn as diamonds. We omitted here to draw
the empty subtreesε in the original tree as well as for the leaves of the resulting
tree.

The original tree.

3

1 3

2 3

1

3 3

11

32 2

2

2

2 3

311 3

After level0.

1 3

2 3

1

3 3

11

32 2

2

2

2

3

31

1 3

After level1.

2 3

1

3 3

11 3

2 2

2

2 31

1

3εε ε ε ε ε ε

After level2.

1

3

32 2

2

1

ε

ε ε ε

ε ε ε ε

ε ε

ε

ε ε ε ε ε ε

ε

After level3.

32

ε

ε ε ε

ε ε ε ε ε

εε

ε ε ε

ε ε ε

ε

ε εε

εε ε

The resulting tree.

εε

ε ε ε

ε ε ε ε

ε ε ε

ε ε

ε

ε ε ε

ε εε

ε ε ε

Next we describe the inverse procedure and consider a non-empty treeT in Tk(d−1)+1,

which will be converted eventually into ai
j

> -freek-colouredd-ary tree whose root is la-
belled byk.

First we will label the nodes of the tree as follows. The root ofT will be labelled byk.
Then, for any nodev in T , we are labelling all children ofv by carrying out the following
procedure recursively, where we are starting with the root node ofT . The(k(d− 1) + 1)-th
child (if non-empty) of a nodev will be labelled by the same label as the parent nodev.
Furthermore the(k(i−1)+`)-th child (if non-empty) ofv, for 1 ≤ i ≤ d−1 and1 ≤ ` ≤ k,
will be labelled bỳ . Thus the firstk(d−1) children of a nodev are labelled by the sequence
1, 2, . . . , k, 1, 2, . . . , k, . . . .
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Second, we will carry out the following recursive procedure for the nowk-coloured(k(d−
1) + 1)-ary treeT . Consider thek(d − 1) + 1 (possibly empty) subtreesS1, . . . , Sk(d−1)+1

of the root ofT . The basic idea is now to merge alwaysk consecutive subtrees, namely
Sk(i−1)+1, . . . , Sk(i−1)+k for any i with 1 ≤ i ≤ d − 1, into a single treeHi. This sequence
of treesH1, . . . , Hd−1 together with the remaining subtreeSk(d−1)+1 will be attached, in this
order, to the root node forming thed subtrees.

To merge the subtreesSk(i−1)+1, . . . , Sk(i−1)+k we use a simple consequence of the la-
belling done before, namely that the nodes on the rightmost path of the(k(d − 1) + 1)-ary
treeSk(i−1)+` are, for1 ≤ i ≤ d − 1 and1 ≤ ` ≤ k, all labelled bỳ . Thus we can simply
concatenate the subtreesSk(i−1)+1, . . . , Sk(i−1)+k in that order by connecting the rightmost

paths of these trees leading to a single treeHi whose rightmost path isi
j

> -free.

When we apply this procedure recursively to the subtrees obtained, this leads to ai
j

> -
freek-colouredd-ary treeH whose root is labelled byk, which is of the same size asT . An
example that illustrates this inverse procedure is given in Figure 4.

It is seen easily that this is indeed the inverse procedure to the previously given one and
thus we obtained a bijection between the tree families considered.

3.3. A proof of Corollary 1. This result follows easily from the generating functions proof
of Theorem 2 carried out in Subsection 3.1. We consider here the generating functionG(z) =∑

n≥0 Gnz
n of the numberGn of i

j
> -freek-colouredd-ary trees of sizen, which can be

expressed asG(z) = 1+G1 + · · ·+Gk, with generating functionsGi, 1 ≤ i ≤ k, as defined
in Subsection 3.1 (we drop here the dependence ofGn andG(z) onk andd).

Due to equation (14) we have the following relation betweenG(z) and the corresponding
generating functionGk for trees whose roots are labelled byk:

G(z) = (1 + Gk)
k.

Since1 + Gk = 1 + Tk(d−1)+1 is also the generating function of (possibly empty)(k(d −
1) + 1)-ary trees it follows thatG(z) corresponds to the generating function ofk-tuples of
(k(d − 1) + 1)-ary trees of total sizen. The formula forGn stated in Corollary 1 follows
immediately by using the Lagrange inversion formula:

Gn = [zn]G(z) =
k

n
[Gn−1](1 + G)n(k(d−1)+1)(1 + G)k−1

=
k

n
[Gn−1](1 + G)n(k(d−1)+1)+k−1 =

k

k(d− 1)n + k

(
(k(d− 1) + 1)n + k − 1

n

)
.

However, a bijective proof of Corollary 1 can also be given. Consider a treeH in Gd,k of
sizen. We split now the treeH into k (possibly empty) treesH1, . . . , Hk by cutting each
edge on the rightmost path ofH that connects nodes with unequal labels (all nodes on the
rightmost path ofHi are labelled byi, 1 ≤ i ≤ k). This works, sinceH has an i

j
> -free

colouring.
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FIGURE 4.

An illustrating example of the bijection presented between a4-ary tree of size21

and a i
j

> -free 3-coloured binary tree of the same size. The recursive procedure
is here performed level by level, where, for a better readability, the nodes in the
original 4-ary tree are drawn as diamonds. We omitted here to draw the empty
subtreesε in the resulting tree as well as for the leaves of the original tree.

The original tree after the labelling.
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3
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1
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3

3

1 3

33

3
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12 3 2 2

After level4.

1 3 1 3

3

31

1 1 2 3

12 3 2 2

2 2 3 3 3

The resulting tree.

3

31
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Now we can apply the recursive procedure described in the bijective proof of Theorem 2
in Subsection 3.2 to each treeHi, 1 ≤ i ≤ k, which mapsHi bijectively to a(k(d− 1) + 1)-
ary treeTi of the same size asHi. Thus we obtain a bijection betweenH and ak-tuple
(T1, . . . , Tk) of (k(d− 1) + 1)-ary trees of total sizen.
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