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ABSTRACT. We present enumeration results fbary trees whose vertices are coloured by
k colours in a specific way. Besides generating functions proofs of these results we also give
direct bijections between these coloured trees and uncolabaegtrees.

1. INTRODUCTION AND RESULTS

We are dealing here witti-ary trees, which are amongst the most fundamental tree struc-
tures with applications, e.g., in combinatorics, computer science and biology, see, e.g.,
[1, 3, 4, 8].

A d-ary tree is either an empty tree or it consists of a root node, to which an ordered
sequence of exactly subtrees is attached that are itséfry trees. We denote the family
of d-ary trees by7Z,; and the empty tree by. In particular in the computer science related
literature one sometimes uses instead of the symlibé notion of external nodes with a
certain symbol distinguishable from the proper nodes, called internal nodes. Eachinode
the tree has then exactychildren attached to and we may speak of the first child, ..., the
d-th child, where we have to allow “empty children! This recursive description can also
be expressed via the following formal equation#Qr whereU denotes the disjoint union of
two combinatorial families:

%:50%& (1)

T, T, - T,

It is well known and can be shown in many ways that the nurfith&rof d-ary trees of size
n, where the siz¢l’| of a treeT’ is here always measured by its number of nodes, is given by
the generalized Catalan numbers:

1 dn
TW = — — f > 0. 2
" (d—l)n+1(n)’ orm =0 @
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For the special instancé = 2, i.e., binary trees where each node has a left and a right
child, several studies of certain subclasses of two-coloured binary trees appeared. In two-
coloured binary trees the nodes in the tree are coloured either black or white. In [2, 5, 6]
remarkable enumeration formulae and relations between subclasses of two-coloured trees,
where restrictions on the colours of two connected nodes are made, and other combinatorial
objects are obtained. In particular in [2, 6] it has been shown in a bijective way that the
number of*, -free two-coloured binary trees with a black root and of size 1 are equal to
the number of (uncoloured) ternary trees of sizédere a two-coloured binary tree is called
*,-free, when there is no edge occurring in the tree that connects a parent coloured black
with a right child coloured white. The bijection presented in [6] gives a procedure, which
is easy to implement and that allows to encode (and decode) a ternary tre@bfree
two-coloured binary tree with a black root of the same size.

This motivated us to have a closer look on relations between certain subclasses of coloured
trees and uncoloured trees, leading to generalizations in two directions: first we deal now
with arbitraryd-ary trees, fod > 2, and second we considkfcoloured trees (ok-labelled
trees), i.e., there is a set bfcolours (or labels)k > 2, and each node in a tree has a colour
(label) from this set.

Although we could deal directly with-colouredd-ary trees, we will present our general-
izations in two steps, which should improve the readability: first we consider two-coloured
d-ary trees, and only then we consider the general cakdaifelledd-ary trees.

So, first we deal with two-coloured-ary trees, where the nodes in a tree are coloured
either black or white. We introduce here the notion®*ef-free two-colouredi-ary trees
(by generalizing the definiton for binary trees), whose meaning is now, that there is no edge
occurring in the tree that connects a parent coloured black wittihahild (i.e., the rightmost
child) coloured white. The family ot -free two-colouredi-ary trees with a black root is
denoted here b§;. An example of a tree i85 is given in Figure 1.

We state now our enumeration result for tree®jnof a given size, which relates black-
rooted *- -free two-colouredi-ary trees with ordinary2d — 1)-ary trees.

2d—1)

Theorem 1. The numbeB? of trees inB, of sizen > 1 is equal to the number, * ) of

trees in7y,_, of sizen and is thus given by
B@ _ 1 (2d — 1)n .
" (2d—2)n+1 n

Next we consider the general caseketolouredd-ary trees, where we have a setkof
colours. For simplicity in presentation we use the set of colgurg, ..., £} and consider
thusd-ary trees, which are labelled with labels frqgm 2, . .., k}.

We introduce now the notion d?;, -free k-colouredd-ary trees, whose nodes are labelled
with labels from the sef1, 2, .. ., k} in such a way that each node labelfed < i < k, does
not have al-th child labelled; < i. We denote by, ;. the family of s, -free k-coloured
d-ary trees.
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FIGURE 1.

An example of & -free two-coloured binary tree of sizd with a black root
and an example of &<, -free 3-coloured ternary tree of siz®).

For an arbitrary labelled or unlabelleary treeT” we define theightmost pathof 7" as
the pathug, . . ., v, whereuy is the root ofT’, v;, for 1 < i < r, is thed-th child of v;_;, and
v, only has an empty-th child. We can give then an alternative definition of the fargily,
as the family ofk-colouredd-ary treesl” with the property, that the rightmost path of any
subtree ofl" consists of a sequence of non-decreasing labels. An example of a gggim
given in Figure 1.

We state now our first enumeration result for treegjn of a given size, which relates
the subclass of%, -free k-colouredd-ary trees whose roots are labelled/bwith ordinary
(k(d—1) + 1)-ary trees.

Theorem 2. The number5 of those trees i, , of sizen > 1 whose roots are labelled by
k is equal to the numberF D of trees iN7y,4—1)+1 Of sizen and is thus given by

W 1 (k(d—=1)+1)n
GL]_k(d—l)n—i-l( n )

Of course, Theorem 1 follows from Theorem 2, where we identify a white node with label
1 and a black node with label

As a corollary we obtain a second enumeration result for tre&g inof a given size,
which relates the whole set &, -free k-colouredd-ary trees withk-tuples of ordinary
(k(d—1) + 1)-ary trees.

Corollary 1. The number7, of trees inG, . of sizen > 0 is equal to the number éftuples
(Th,...,T}) of trees inTyq—1)11 with total size|T' | + - - - + |T;| = n and is thus given by

- k (k(d—1)+ Dn+k—1
Gn_k(d—l)n—i—k( n )

For all our results we give a proof via generating functions, but furthermore we also
present bijective proofs for our findings. E.g., when considering the special instance of
k-coloured binary trees, our bijection gives a procedure, which is easy to implement and that
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allows to encode (and decodejfa+ 1)-ary tree by a®; -free k-coloured binary tree with
a root node labelled by of the same size.

A proof of Theorem 1 is given in Section 2, whereas Theorem 2 and Corollary 1 are proven
in Section 3.

2. TWO-COLOUREDd-ARY TREES

2.1. A generating functions proof of Theorem 1. We begin by stating the well-known

fact that the generating functidfy(z) = > -, T\ 2 of non-emptyd-ary trees satisfies the
functional equation -

Tu(2) = 2(1 + Ty(2))". (3)
This equation can be obtained, e.g., directly from the formal equation (1), see [7] for a
description of this symbolic method. An application of the Lagrange inversion formula, see,

e.g., [8], gives then immediately the enumeration result (ZYﬁB)n

ﬂ@:wwuazﬁw4m+Tw:lQﬁz>:GT%FE(?) (@)

n

Now we are going to enumerate the numigf’ of trees inB, of sizen, i.e., of black-
rooted two-coloured . -free d-ary trees. To do this we introduce the auxiliary famiy; of
two-coloured®.-free d-ary trees with a white root. The number of treed/if) of sizen is

denoted b)W,(Ld).

Next we introduce the generating functions (where we drop the dependence of these func-
tions onz andd, for a better readability):

B = ZBT(Ld)Z", and W = ZBﬁLd)z".
n>1 n>1

We use now the formal equation (1) &ary trees, which gives a decomposition of a tree
according to the root node, but additionally we take into account that, for a root node coloured
black, thed-th child, if it is non-empty, must be coloured black also. This decomposition
leads then immediately to the following system of equations for the funcfioasd 1V :

W =2(1+B+W)", (5a)
B=z(14+B+W)"'(1+ B). (5b)

Multiplying equation (5a) with{(1 + B) and plugging in (5b) we obtain

(1+B)W =z2(1+B+W)Y1+B)=B(1+B+W),
which gives by subtracting W on both sides:

W = B(1+ B). (6)
When we plug in (6) into equation(5b) we obtain the following functional equatio®for
B=z(1+B+B(1+B))" ' (1+B) = 2(1+B)*" ' (1+ B)" ' (14+B) = 2(1+ B)*'. (7)
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Thus we obtain exactly the functional equation, which is satisfied by the generating function
T4=1)(%) of the number of non-empt{2d — 1)-ary treesT)* Y of sizen, see (3). This,
together with equation (4), shows then Theorem 1.

2.2. A bijective proof of Theorem 1. Consider a tre€’ in B,. We will give now a simple
recursive procedure, which eventually leads to an unlab¢lléd- 1)-ary tree of the same
size.

Consider thel (possibly empty) subtre&s,, .. ., C, of the root ofC. The basic idea is to
split each of the firsl — 1 subtrees’, ..., Cy_ in exactly two (possibly empty) trees, i.e.,
the treeC;, 1 <i < d — 1, will be split into the pair of tree€’; ; andC; ». This sequence of
treesC 1, C12,Ca1, Cao, ..., C4_11, Cyq_12 together with the remaining subtrég will be
attached, in this order, to the (now uncoloured) root node formingdhe 1 subtrees.

To split any subtre€’; into two parts we use thdt is *o-free, which gives in particular,
that the rightmost path a@f; consists of a possibly empty sequence of white nodes, followed
by a (possibly empty) sequence of black nodes. By cutting the possibly occurring edge
which connects a white parent node with-¢gh child coloured black, we obtain then the pair
of (possibly empty) tree€’; ; and C; », where all nodes on the rightmost path@f, are
coloured white and all nodes on the rightmost pattiof are coloured black.

When we apply this procedure recursively to all of the subtrees obtained this leads to a
(2d — 1)-ary treeT” of the same size &S. An example that illustrates this procedure is given
in Figure 2.

We retain here from giving the description of the inverse procedure, since it follows from
the general case as special instahice 2 (and the convention, that a white node corresponds
to a labelling byl and a black node to a labelling Ry, and this procedure for the general
case is presented in Subsection 3.2.

3. k-LABELLED d-ARY TREES

3.1. A proof of Theorem 2 via generating functions. We consider now the familg, ;. of
-free k-colouredd-ary trees. Let us denote l@iﬁ], 1 < ¢ <k, the number of those trees

in G, . of sizen > 1 whose roots are labelled byFurthermore we introduce the generating
functions (again we drop the dependence of these functionsaodd):

Gy = ZGE]ZTL, coey Gy = ZGWZ'”.
n>1 n>1

We use now the formal equation (1) &fary trees, which gives a decomposition of a tree
according to the root node, but here we have to take into account that, for a root node labelled
i, thed-th child, if it is non-empty, must be labelled by a label from the{get. ., k}. This
decomposition leads then immediately to the following system of equations for the functions

Gi=z2(1+Gy+ -+ Gy,
Go=2(1+Gi+ -+ Gp)" 1+ Gy + Gy + -+ Gy),



6 A. PANHOLZER AND H. PRODINGER

FIGURE 2.

An illustrating example of the bijection presented between a black-robtetee

two-coloured ternary tree of sizd and a5-ary tree of the same size. The recursive
procedure is here performed level by level, where, for a better readability, the nodes
in the resulting uncoloured-ary tree are drawn as diamonds. We omitted here to
draw the empty subtreesn the original tree as well as for the leaves of the resulting

tree.
The original tree. After level 0. After level 1.
€ €
€ ee ee
After level 2. The resulting tree.
€ €
€ ee ee e ee ee
€ e ee ee € ee ee

- (8)
Gro1=2(1+ G+ + Gp) (1 + Gy + Gy),
Gr =214+ G+ + G (1 +Gy).
Next we will show by induction on that the functiongs,_; can be expressed Iy, via
Gri=Gr(1+ Gy, 1<i<k-1, (9)

First we show (9) for = 1. To do this we multiply the&% — 1)-th equation of (8) with
1 + Gy, which gives

(1+Gr)Gro1 =21+ G+ + G)" 1+ Gr) (1 + Gt + Gi) = Gr(1+ Gio1 + Gy),
and further the desired equation by subtractihg G on both sides:
Gi_1 = Gk(l + Gk) (10)

Now we assume that (9) holds for glwith 1 < j < i < k—1. We multiply the(k —1i)-th
equation of (8) withl + G_;+1 + - - - + Gy, which gives

(1 + Gk—i—H + -+ Gk)Gk_z
— (1 Gt 4 G (14 Grgr o+ GR) (L4 Gt + -+ + G
= Groi1(L+ Gri + - + Gy)



BIJECTIONS BETWEEN CERTAIN FAMILIES OF LABELLED AND UNLABELLEDdJ-ARY TREES 7

and further by subtracting';,_;G_;.1 on both sides:
(1+Groigo+ -+ Gr)Giei = Greigan(1 + Gr—ipr + - + Gy). (11)

We use now the induction hypothesis and evaluate the following surh,€oj < i:

J J
L4 Grojt -+ Ge=1+Gp+ Y Ge(l+Gp)' =1+ G Y _(1+Gy)
/=1 /=0

140G, ((1+ng+1_1> — (14 Gy (12)
k

When we plug in (12) into both sides of equation (11) we obtain then the desired equation,
which finishes the proof of (9) by induction:
Gr_i = Gp(1+ Gp)". (13)
Since we have shown now equation (9) foriallvith 1 < ¢ < k — 1, we can evaluate the
following sum analogous to (12) and obtain
L4+ Gr+ -+ G = (14 Gp)". (14)

When we plug in equation (14) into the last equation of (8) we get the following functional
equation forGy:

G = 2(1 4 Gj)kd-D+L, (15)
Thus we obtain foG;, exactly the functional equation, which is satisfied by the generating
function Ty(s_1);1(2) of the number of non-emptgk(d — 1) + 1)-ary treesT" )+ of
sizen, see (3). This, together with equation (4), shows thus Theorem 2.

3.2. A bijective proof of Theorem 2. Consider a treé? in G, whose root is labelled by
k. We will give now a simple recursive procedure, which eventually leads to an unlabelled
(k(d — 1) + 1)-ary tree of the same size.

Consider thel (possibly empty) subtree, ..., H, of the root of H. The basic idea is
again to split each of the firgt— 1 subtreesd,, ..., H, 1, but now in exactlyk (possibly
empty) trees, i.e., the trefé;, 1 < i < d — 1, will be split into ak-tuple of treesH; 1, H; -,

.., H; .. This sequence of tred$, 1, ..., H1 s, Ha1, ..., Hoy, Hs1, ..., Hy_1 ) together
with the remaining subtre#&,; will be attached, in this order, to the (now uncoloured) root
node forming the:(d — 1) + 1 subtrees.

To split any subtre€d; into k parts we use that the rightmost path @f is ©,-free
and thus forming a non-decreasing sequence of labels, i.e., a possibly empty sequence of
followed by a (possibly empty) sequence2pfand so on, and ending by a (possibly empty)
sequence of. By cutting each edge on the rightmost path that is connecting two nodes
with an unequal label, we obtain then the sequence of (possibly empty)rees ., H; .,
where all nodes on the rightmost path/éf, are labelled by, 1 < ¢ < k.

When we apply this procedure recursively to all of the subtrees obtained this leads to a
(k(d — 1) + 1)-ary treeT of the same size a§. An example that illustrates this procedure
is given in Figure 3.
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FIGURE 3.

An illustrating example of the bijection presented betweePkz-free 3-coloured
binary tree of sizel and a4-ary tree of the same size. The recursive procedure
is here performed level by level, where, for a better readability, the nodes in the
resulting uncoloured-ary tree are drawn as diamonds. We omitted here to draw
the empty subtreesin the original tree as well as for the leaves of the resulting
tree.

The original tree. After level 0.

After level 3. The resulting tree.

Next we describe the inverse procedure and consider a non-empty’ ired;q_1);1,
which will be converted eventually into &, -free k-colouredd-ary tree whose root is la-
belled byk.

First we will label the nodes of the tree as follows. The roofovill be labelled byk.
Then, for any node in 7, we are labelling all children of by carrying out the following
procedure recursively, where we are starting with the root nodé @he(k(d — 1) + 1)-th
child (if non-empty) of a node will be labelled by the same label as the parent node
Furthermore thék (i — 1) + ¢)-th child (if non-empty) of, for1 <i <d—1andl < /¢ <k,
will be labelled by¢. Thus the firsk:(d — 1) children of a node are labelled by the sequence
1,2, k1,2, ...k, ....
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Second, we will carry out the following recursive procedure for the hawloured(k(d—
1) + 1)-ary treeT'. Consider thei(d — 1) + 1 (possibly empty) subtrees;, ..., Ska—1)+1
of the root of 7. The basic idea is now to merge alwalysonsecutive subtrees, namely
Sk(i—1)41» - - -» Sk—1)+k for anyz with 1 < ¢ < d — 1, into a single tre€d;. This sequence
of treesHy, ..., H;_; together with the remaining subtrég;_,)1 will be attached, in this
order, to the root node forming thesubtrees.

To merge the subtree$,;_1y,1, ..., Ski-1)+x We use a simple consequence of the la-
belling done before, namely that the nodes on the rightmost path ¢kthe- 1) + 1)-ary
treeSy;—1)4¢ are, forl <i < d—1andl < ¢ < k, all labelled byl. Thus we can simply
concatenate the subtre€g;_1).1, - .., Sku—1)+« in that order by connecting the rightmost

paths of these trees leading to a single #&evhose rightmost path i8%; -free.

When we apply this procedure recursively to the subtrees obtained, this lead3e a
free k-colouredd-ary treeH whose root is labelled by, which is of the same size d5 An
example that illustrates this inverse procedure is given in Figure 4.

It is seen easily that this is indeed the inverse procedure to the previously given one and
thus we obtained a bijection between the tree families considered.

3.3. A proof of Corollary 1. This result follows easily from the generating functions proof
of Theorem 2 carried out in Subsection 3.1. We consider here the generating fUrCtios

Y o Gn2z™ of the numbeiG,, of @, -free k-colouredd-ary trees of size:, which can be
exp?essed as(z) = 1+ Gy + - - -+ Gg, with generating function&';, 1 < < k, as defined

in Subsection 3.1 (we drop here the dependendg,adndG(z) on k andd).

Due to equation (14) we have the following relation betwégn) and the corresponding
generating functiordr; for trees whose roots are labelled by

G(2) = (1+ Gy~

Sincel + Gy = 1 + Ty-1)+1 is also the generating function of (possibly empty)d —
1) + 1)-ary trees it follows thatz(z) corresponds to the generating functionketuples of
(k(d — 1) + 1)-ary trees of total size. The formula forG,, stated in Corollary 1 follows
immediately by using the Lagrange inversion formula:

Gn _ [Zn]G(Z) _ S[Gn—l](l + G)n(k(d—l)-l—l)(l + G)k—l
ko na n(k(d—1)+1)+k—1 _ k (k(d=1)+1)n+k—1
_n[G Ia+6) Ck(d—1Dn+k n '

However, a bijective proof of Corollary 1 can also be given. Consider aHr@ed, . of
sizen. We split now the tree€d into k (possibly empty) treeéf,, ..., H, by cutting each
edge on the rightmost path &f that connects nodes with unequal labels (all nodes on the
rightmost path ofH; are labelled by, 1 < i < k). This works, sincef has an®; -free
colouring.
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FIGURE 4.

An illustrating example of the bijection presented betweelraay tree of size2l
and a ©s, -free 3-coloured binary tree of the same size. The recursive procedure
is here performed level by level, where, for a better readability, the nodes in the

original 4-ary tree are drawn as diamonds. We omitted here to draw the empty
subtreeg in the resulting tree as well as for the leaves of the original tree.

The original tree after the labelling.
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Now we can apply the recursive procedure described in the bijective proof of Theorem 2
in Subsection 3.2 to each trég, 1 < i < k, which mapsH; bijectively to a(k(d — 1) + 1)-
ary treeT; of the same size af;. Thus we obtain a bijection betwedh and ak-tuple
(Ty,...,Ty) of (k(d — 1) 4+ 1)-ary trees of total size.
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