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TOPOLOGIES ON FREE MONOIDS
INDUCED BY FAMILIES OF LANGUAGES (*)

by Helmut PRODINGER (X)

Communicated by M. NIVAT

Abstract. - For i f c^> (£*) the language operator Anf^ (A) is defined by {z\ z\A e^}. Itwas
characterized what families JSf correspond to ciosure operators. In this paper the families Z£ are
found out corresponding to interior operators: they are filters with a special property. For the case
of principal filters <£= {A\A=IL} such a family is obtained iff L is a monoid. Thus from euery
monoid a topology can be constructed. Further results are given.

Resumé. — Étant donné une classe de langages J?, on définit un opérateur sur les langages
Anf^(y4)= {z\z\AeJ?}. On connaissait déjà les familles S? correspondant à des opérateurs de
fermeture. Dans cet article on décrit les familles $£ correspondant à des opérateurs d'ouverture : ce
sont des filtres avec une propriété caractéristique. Pour le cas de filtres principaux J£f — {/4 | /4^L}
cette propriété caractéristique est que L soit un monotde. Par conséquent on peut construire une
topologie pour chaque monoïde L. D'autres résultats sont formulés dans Varticle.

1. INTRODUCTION

In [2] there are considered some special topologies on the f ree monoid £*.
For the sake of brevity, the reader is assumed to have a certain knowledge of
this paper. If if is a family of languages, let Anf^ (A) = { z | z\A e $? } . It has
been characterized in terms of 4 axioms what families «Sf produce ciosure
operators Anf^. (So we know what families induce a topology on E*; from
now on we call them ^-topologies.) Furthermore it was possible to know from
the family of open sets whether or not the topology on E* was an if-topology.

In Section 2 we make some further remarks on our former paper.
It is well known that a topology can be described in some ways: ciosure

operator, family of open sets, interior operator, neighbourhood System, etc. (We
refer for topological conceptions to [1].) The first two ways with respect to
if-topologies are already considered in [2]; in Sections 3 and 4 the third and
fourth possibility of generating an if-topology are discussed.

(*) Received July 1981, revised December 1982.
O Institut für Algebra und Diskrete Mathematik, TU Wien, GufihausstraBe 27-29, 1040 Wien,

Austria.
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2. ADDITIONAL REMARKS ON OUR FIRST STUDY OF ^-TOPOLOGIES

We present a further example of an Jèf-topology: Let A/w= {z | zweA } and
assume zeS* to be fixed. Let <pz04) : = U Afztt. It is easy to see that <pz

nêO
fulfills the axioms (A1)-(A4) and is therefore a closure operator. Now, since
(x\A)/y = x\(A/y), it follows that:

9z (w\^4) = w\cpz (i4) for ail weZ*.

So cpz is leftquotient-permutable and thus by Lemma 2.7 of [2] cpz = Anf^z,
where ££z = {̂ 41 s e (pz (4)} = {̂ 41 there exists an n e No such that zneA}. For
z = swe obtain the discrete topology,

It is clear how this situation can be generalized. Let M ^ S * be a submonoid
and cpM(/4) : = U A/m, then <pM is the closure operator of an if-topology

me M
with &M= {A\M H A^Ç)} .

We present in short some examples of topologies which are not <£-
topologies:

The closure operator L\—•LS*; the closure operator L\—>£*L; the (so
called) left topology; let us recall that the right topology is an Jêf-topology
(with closure operator Init).

THEOREM 2.1: Thefollowing 3 statements are equivalent:
(i) Xg? is a Ti-space (i. e. eac/i set {x } is closed);

(ii) d(j£f) contains no set of cardinality 1;
(iii) 5(^f) contains no finite set.
Proof: The équivalence of (i) and (ii) has been already proved in [2].

Trivially, (iii) implies (ii). Now assume that (i) holds and Led(&) be a finite
set. Then, by (i), L is closed. But a set L in d{S£) can never be closed, because

jS? and

3. INTERIOR OPERATORS AND JSf-TOPOLOGIES

For a given topology, let I be the interior operator, defined by I(A) = (Âd)c

(sometimes written as ^4°).

THEOREM 3.1: The interior operator of an <£-topology is leftquotient-
permutable; the corresponding family <£i is given by:
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Proof: Since (x\B)c = x\Bc and Anf<?(x\B) = x\Anfj?(B), we have:

ƒ (x\A) = [Anf* ((x\A)c)r = [Anf * (x \#f f = [x\Anf* (Ac)]c

By [2]; Lemma 2.7, i f , = {,4|eeJ(i4)}. Now we have:

sel(A) o ze[Anf <?(AC)]C

<̂> e £ Anf^ (4C) ^> e V I e

Example: For i? = ̂ 0(£*), we have ifj = {E*}; ze/(i4)ofor all x holds
zxeA.

For <£ = %\J{A\zzA), we have J&f/={^|v4c finite and eeA};
zei (A) o ze A and for almost all x holds zx e A.

In [2] there are given 4 axioms (T1)-(T4) which characterize the «Sf's leading
to closure operators [a(JSf) = JSf is assumed to hold].

A straightforward reformulation of this axioms in terms of J5f7 yields:

THEOREM 3.2: Let ̂ ^{A^eA}. Then Si leads to an interior operator
iff(U)-(U) hold:

(II)

A e JSf j , i c 5 => B e if/s (12)

AC\BeSeu (13)

,4 ei?/ o Anf^^eif/, (14)

REMARK: Similar as for if in [2], it is possible to drop the condition
^!^{A\zeA} and to f ormulate other axioms. But this is not too meaningf ui
and therefore omitted.

REMARK: Since 2*ei? , it follows (f>t^i- This together with (I1)-(I3) leads
to the surprising fact that:

<£i is a (proper) filter.

So the question arise what filters fulfill the axiom (14). For the special case
of a principal filter ££ (L) : = { A | A => L } this can be answered:

THEOREM 3.3: i?(L) fulfills axiom (14) iff£? is a monoid.
Proof: Let us ref ormulate axiom (14) for this special situation:

A e if (L) o Anf^ (L) (A) e & (L) means:
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Thus axiom (14) is equivalent to:

Setting A~L, (*) implies:

zeL => L^z\L. (**)

But a short reflection shows that (**) is also equivalent to (*) [and to (14)!]
Furthermore this means:

zeL =>

or:
zeL, weL => zweL.

Since S£ (L) g {^4|ee>l} we have e e L, and the proof is finished.

REMARK: Each submonoid M g E* leads us to an J$f-topology!

Let us recall the following fact from [2]: Let X=(L*, O) be an J5f-topology.
Then:

^ = ̂ ( 2 * ) - {A|thereis anOeO such that seO and A^0c};

this family j£f is unique subject to the condition 5£ = OL (if). Now let us
compute S£i\

o Ace{B\30e£ : eeO and

<̂> 30eO : seO and Ac^0c o 30eO : ^

5el= {A\3ösD : e eOg^}

and we find:

££i is the filter of neighbourhoods of E !

By [2]; Lemma 2.13, we know A open<s>for all xeA holds (x\A)c$J?,
which now simply means:

for all xeA holds x\AeJèf7/!

Altogether it seems that it is easier to work with if/ instead of if !
Now we are ready to formulate a gênerai base représentation theorem

(generalizing [2]; Theorems 3.3 and 3.4):

THEOREM 3.4: Let X=(L*, O) be an S£-topology. Then:

93= {xA\xeX*, Ae&i} is a base for O.
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Proof: If 0 is open, then for all x G 0 holds x \ 0 e JSf /. Thus x (x \0 ) e 33 and
0= U x(x\0) .

xeO

4. SYSTEMS OF NEIGHBOURHOODS AND ^f-TOPOLOGIES

A further method to generate a topology is to construct a System of
neighbourhoods.

THEOREM 4.1: Let X=(S*, O) be art £?-topology and let SB(x) be the family
of neighbourhoods of x. Then:

Proof:

: eex\(y\0)^x\(y\A)}

REMARK: The property S (x) = j \ 9 3 (yx) implies y S (x) g 33 (jx).
We can prove also a converse of Theorem 4.1.

THEOREM 4.2: Assume that there is a System of neighbourhoods {93(x)}
satisfying:

TTien £fce topology is even an ^-topology.

Proof: By [2]; Theorem 2.16 it is sufficient to show that the System of open
sets O is left stable.

Let 0 be open, i. e. 0 is neighbourhood of all its points, i. e.:

xeO => OG33(X).

To show: z \ 0 is open. Let X G Z \ 0 , i.e. ZXGO, Le. Oe93(zx). By the
condition: z \ 0 G Z \ 3 3 (ZX) = 93 (x).

Furthermore we have to show: z 0 is open. Let x G z 0, i. e. x = zy and y e 0,
i.e. 0G93O>). From the last remark: zOGz33(j>)gS(z}>) = 93(x).
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REMARK: We know already that 5£i is simply 33 (e). So we have for ail
Systems of neighbourhoods by means of the remark after Theorem 4.1:
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