ON THE NUMBER OF PARTITIONS OF $\{1,\cdots,n\}$ INTO r SETS OF EQUAL CARDINALITIES AND EQUAL SUMS

HELMUT PRODINGER

TAMKANG JOURNAL OF MATHEMATICS, VOLUME 15, NO. 2, 1984 GRADUATE SCHOOL OF MATHEMATICS, TAMKANG UNIVERSITY TAMSUI, TAIPEI, TAIWAN, REPUBLIC OF CHINA

ON THE NUMBER OF PARTITIONS OF $\{1, \dots, n\}$ INTO r SETS OF EQUAL CARDINALITIES AND EQUAL SUMS

HELMUT PRODINGER

(Received April 14, 1982)

In [2] it is proved that the number A(n) of ways to partition the set $\{1, 2, \dots, n\}$ into two sets of equal cardinalities and equal sums of elements is asymptotically given by

(1)
$$A(n) \sim \frac{2^n}{n^2} \frac{4\sqrt{3}}{\pi}, \quad n \to \infty, \quad n \equiv 0 \pmod{4}.$$

The aim of this note is to extend this result to the case of r subsets. Our result is

THEOREM. The number $A_r(n)$ of ways to partition the set $\{1, 2, \dots, n\}$ into r sets of equal cardinalities and equal sums of elements is given by

(2)
$$A_{r}(n) \sim \frac{2\sqrt{3}}{(2\pi)^{r-1}} \cdot \frac{r^{r} r^{n}}{n^{r}}, \quad n \to \infty,$$

$$\begin{cases} n \equiv 0 \pmod{r} & \text{if } r \text{ odd} \\ n \equiv 0 \pmod{2r} & \text{if } r \text{ even}. \end{cases}$$

Instead of giving an exact proof which would be rather lengthy (partially because of a necessarily clumsy notation) we just stress the main ideas of the proof and refer to [2] for a full treatment in the case r=2.

If f is a power series in variables $x_1, \dots, x_s, \langle x_1^{i_1} \dots x_s^{i_s} \rangle f$ will denote the coefficient of $x_1^{i_1} \dots x_s^{i_s}$ in f. It is now quite clear that $A_r(n)$ is given by

(3)
$$\langle (x_2 \cdots x_r)^{n/r} (z_2 \cdots z_r)^{n(n+1)/2r} \rangle \prod_{k=1}^n (1 + x_2 z_2^k + \cdots + x_r z_r^k);$$

to derive the asymptotics of $A_r(n)$ we want to use Cauchy's Theorem,

so more-dimensional integrals come into play. From (3) we easily see that $A_r(n) \neq 0$ provided

(4)
$$r \equiv 1 \pmod{2}, \quad n \equiv 0 \pmod{r} \quad \text{or}$$
$$r \equiv 0 \pmod{2}, \quad n \equiv 0 \pmod{2r},$$

which is assumed to hold throughout this paper. In the sequel we need some preliminaries.

Let I be the matrix of unity, and J the matrix whose entries are all equal to 1, both of dimension $(r-1) \times (r-1)$. It is easy to establish the following results:

(5)
$$\det(rI - J) = r^{r-2},$$

(6)
$$\det\left(n\left(I-\frac{1}{r}J\right)\right)=n^{r-1}\cdot\frac{1}{r}.$$

Let

$$A = \begin{bmatrix} aB & bB \\ cB & dB \end{bmatrix},$$

then

(7)
$$\det A = (\det B)^2 \begin{vmatrix} a & b \\ c & d \end{vmatrix}.$$

We use some shorthand notations:

For $\sum a_i$ we write [a], for $\sum a_i b_i$ we write [ab] and so on. We use the substitutions

$$(8) x_i = e^{it_j}, z_i = e^{is_j},$$

then

(9)
$$A_{r}(n) = \frac{1}{(2\pi)^{2(r-1)}} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \prod_{k=1}^{n} \left(1 + e^{i(t_{2} + ks_{2})} + \cdots + e^{i(t_{r} + ks_{r})}\right) \times e^{-i(n/r)[t]} e^{-i(n(n+1)/2r)[s]} dt_{2} \cdots dt_{r} ds_{2} \cdots ds_{r}.$$

For asymptotical purposes we may replace

$$(1 + e^{ix_2} + \dots + e^{ix_r})$$
 by $r\left(1 + \frac{i}{r}[x] - \frac{1}{2r}[x^2]\right)$

and thus

(10)
$$(1 + e^{ix_2} + \dots + e^{ix_r}) e^{-(i/r)(x)} by r e^{-(1/2r)(x^2)^2 + (1/2r^2)(x)^2}$$

Applying (10) to (9) we have an asymptotic equivalent for $A_r(n)$; in this formula the integrals may be replaced by $\int_{-\infty}^{\infty}$. So we find

(11)
$$A_{r}(n) r^{-n} (2\pi)^{2(r-1)} \sim \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2r} \sum_{k=1}^{n} \left[(t+ks)^{2} \right] + \frac{1}{2r^{2}} \sum_{k=1}^{n} \left[t+ks \right]^{2} \right) \times dt_{2} \cdots dt_{r} ds_{2} \cdots ds_{r}.$$

Now

(12)
$$\sum_{k=1}^{n} [(t+ks)^{2}] = \sum_{k=1}^{n} [t^{2} + 2kts + k^{2}s^{2}] \sim n[t^{2}] + n^{2}[ts] + \frac{n^{3}}{3}[s^{2}],$$

and similarily

(13)
$$\sum_{k=1}^{n} [t + ks]^{2} \sim n[t]^{2} + n^{2}[t][s] + \frac{n^{3}}{3}[s]^{2}.$$

To compute the integral we have to write

$$-\frac{1}{2r}\left(n[t^2] + n^2[ts] + \frac{n^3}{3}[s^2]\right) + \frac{1}{2r^2}\left(n[t]^2 + n^2[t][s] + \frac{n^3}{3}[s]^2\right)$$

as

$$(14) \qquad -\frac{1}{2} [t_2, \cdots, t_r; s_2, \cdots, s_r] \cdot A \cdot [t_2, \cdots, t_r; s_2, \cdots, s_r]^t$$

with a certain matrix A of dimension $(2(r-1)) \times (2(r-1))$. It is quite easy to see that

$$A = \frac{n}{r} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} + \frac{n^2}{2r} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} + \frac{n^3}{3r} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}$$

$$-\frac{n}{r^2} \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} - \frac{n^2}{2r^2} \begin{bmatrix} 0 & J \\ J & 0 \end{bmatrix} - \frac{n^3}{3r^2} \begin{bmatrix} 0 & 0 \\ 0 & J \end{bmatrix}$$

$$= \frac{n}{r^2} \begin{bmatrix} aB & bB \\ cB & dB \end{bmatrix},$$

with B = rI - J, a = 1, b = c = n/2, $d = n^2/3$. So

(16)
$$\det A = \left(\frac{n}{r^2}\right)^{2(r-1)} \det^2 \left[rI - J\right] \cdot \left|\frac{1}{n/2} \frac{n/2}{n^2/3}\right| = \frac{1}{12} \left(\frac{n}{r}\right)^{2r}.$$

It is well known [1] that

(17)
$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2} [t_2, \cdots, s_r] A[t_2, \cdots, s_r]^t\right) dt_2 \cdots ds_r$$

$$= (\det A)^{-1/2} \times (\sqrt{2\pi})^2 (r-t)$$

$$= \frac{(2\pi)^{r-1} 2\sqrt{3} r^r}{n^r},$$

which leads to (2).

References

- [1] N. L. JOHNSON, S. KOTZ, Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons, New York, 1972.
- [2] H. PRODINGER, On the number of partitions of {1, ..., n} into two sets of equal cardinalities and equal sums, Canad. Math. Bull., 25 (1982), 238-241.

Institut für Algebra und Diskrete Mathematik, Technische Universität Wien, Gußhausstraße 27-29, A-1040 Wien, Austria