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ABSTRACT

This paper deals with the average number of subblock occurrences in the
following representations of integers : the <q, d> -ary representation (with digits d,
d+1, . . ., d f q-1) and the Gray code representation .

1 . INTRODUCTION

In a recent paper [3] P. Kirschenhofer has proved the following
result on the number BQ(w, n) of subblocks w in the q-ary representation
of n E No , where overlapping is allowed and w is a string of digits of
length s neither starting nor ending with 0

M-1

(1)
M 2

	

InB,(w, m)=
	 log°mqy(s-1) +H.(Ioggm)+

n=0

wjlere H. is continuous, periodic with period 1 and H„(0) =0 and E. is

bounded.

For the special case q=2 and w=1 3 this result has already appeared
in [5] .

The method to establish this result is an approach to apply a method
m hich has been introduced by Delange in [1] where he has analyzed the
sum of digits function .
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GRAY CODE REPRESENTATION

(Theorem 1)-the courier expansion of a pe:- iodic function appearing in
this averase constitutes the next re-ult (Thecrem 2) . At the end of the

desection we use the previous results to establish the

	

sire:1 a' erage

m-~ 1

where

~=
(3) ~I-(o •

w)a~d-

1
q;

	

q-
d

1 -

1
q;

PROOF. The k-term in the sum of the Lemma can oniy take the
values 0 and 1 . In the following we will show that it takes the value I iff
w occurs as a subblock in the <q, d>-representation of r (starting with
the k-th digit left to the radix point) .

We deane the number s by the equation

(2)

1
n7

Ao,d(w, r)

n=0

(Lemma 2, resp . Theorem 3) .

LEMMA 1 . Let w be a seq .:cnce cj~ s di,;t:s riot _i : ar: inb with 0 and
let A Q , d(w, r) denote the number of siibvl : c:ks . .- in the < q, d> -representa-
tion of the real r>0, where wce count all these occurr : nces chat are either
entirely to the left or straddle the radix point . Thea

k> 1

q"` - s . a = r-q c

B-7,,,,(W, n)

J;++-J- ;

~ q'

	

L

. 1 011,d- q
r - d I

r .q-1 -j

(The last term corresponds to the digits left of the k-th position .)

Then it follows that

	q - q$ - (0

	

q 3 C E <
qdq

1 • -(0 . W)2,d • q, a'

and it can be readily checked that a subbicck www starting at k-th position
corresponds to values E in the interval

d <E<

	

d r1 .q-1

	

q-1
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Indeed, the k-term of the sum is 1 in this case . To make the discussion
of the remaining cases for e independent from the special form of w,
observe that

	 d
( 1- 1 ) (o

	

< - dq-1

	

q'

	

q-1

The remaining intervals for e are covered by

qd1	 -q'+1 6 E < q d l

and

qd1 -f-1 < E <
qd1

I-q3 .

In both cases the k-term of the sum is 0 .

For later use we remark that the proof of Lemma 1 contains also
the following corollary .

COROLLARY 1 . The number BQ ,d (w, r) of subblocks w in the situa-
tion of Lemma 1 that are entirely to the left of the radix point is given
by

r

	

1

	

r

	

`
(4)

	

Bq,d(w, r -

	

L qk +A+ q ; -
qk

-t-(3 ~~ .

Following-the plan indicated at the beginning of this section we turn now
to the investigation of the average of B q ,a(W, n)

In a first step we compute the average A,,d(w, r) .

THEOREM 1 . With w and,4 4,d(w, r) as in Lemma 1 we have
m

(5) m f
Aq,d(w, r) dr = I

q3°m
±Hw(loggm)

0

where H. is a continuous, periodic function with period 1 and H„ (0)=0 .

PROOF . With the explicit formula for A-,,d(it', r) of Lemma 1 we
get

M

	

m

J Aq,d(w, r) dr=
J

	

(L
qk

	

q8 J -t q k

	

dr
0

	

0 k>1

1
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q'
/+1-- 1

we
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so that

m

	

1 + 1 rn
r( 6)

	

J Ai,a(N', r) dr=

	

~~
Lk +J-~

0

	

k-1 0

	

q

It is convenient to introduce the function

Putting

(9) H.(x)= 1-Y-- Y+x} + ql-y-{-Y+x}

hf3,s(q{- Y+x} - l+y),

We observe that nonzero contributions to the sum may originate
only from values of k<1 + 1 where

1=
L

log ,m-logs( 1+
d

q - 1 J

x

(7) g~,s(x)= f ([ u+(3+ q$ J-[ u+3]
qs

)du.

0

Then gP s is continuous, periodic with period 1, gp s (0)=0, and a

simple substitution (compare with [3]) shows that the- sum from above
equals

I J-L qk
+P J) dr .

33

)_

q'
m(1+1)+ E q1+1-k

gas
(mqk-1-1

k>0

With {x}=x-Lxl

	

( 1+
d

we can rewrite (6) asand y=log,
q-1

~$
log,m -

	

m-'
q'

(1-y-(-Y+logQm})

-1+y+(-Y+log,m} ),+mq1-Y-{ y+loggm} . h~ s(q,
where

(8) hP'3(x)=
I

q -k g, 's(xgk) .

k>0
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the function H.(x) is continuous, periodic with pericd I and H„(0)=0,
and Theorem I is established . D

It is instructive to compute the Fourier coefficients of the periodic
function appearing in Theorem 1 .

THEOREM 2 . The periodic function Hjx) of Theorem I has the
following Fourier expansion

(10)

	

H.(x)=

	

h .k .e

with

and

2 a ikx

	 f (1-13+q ';)

	

I 1	1	
hl )=logq

	

n

	

-

	

-;-

	

,
f (1- {s})

	

q { 2

	

log q

	 (;(k, 1	{~+q-'))-y (Xti,1	{~})
(11) hk__
	

log q . &: . (1 + k:)

	

-, k#0

where {x}=x-Lxl denotes the fractional part of x, ~, (2-, a) the function
of Hurwit:, ti =2k :zi ; lo; q and , is defined as in Lemma 1 .

PROOF. Let y=l ogq
( 1
+

q
d

1 -)
and assume y < x < Y

-

H. (r)= 1g3x
+ql-' h

P
s (gs-1)

hk=ak+bk

y --1

with

	

ak= S ql hP's(q'-') e-2knix dx,

Y+1

bk

	

1

	

(1 -x) e-2k-zixdx.= -~7 f
Y

It is readily verified that

bo= q
3

bk=
qs

.

1
) - Y

e

	

, k#0 .
2k it i

1 . Then
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00
y+1

q1-2-*
SP 'sW

r=0 y

Using the substitution x=1-r+ log qu we get
Further

	

ak=

with

With the abbreviation

oc gp~s (u)
(12) (D 3's(z)= I

	

U- 1

we may write

ak=

In the following, we compute (D, s(z) for z# 1

-10

D y (z)= . - u ,-i

I1= 1 r
d,L u+p+ fs J tiu'

qY-1

J
du
ua

[u+pj du,

qY-1
Is =

I

ak =

3 -

00

	

g'g s(u)

!o ° 11 c

	

J

	

u2+ kdtt .

ay-1

log q

	

~3's(1+ k) •
1

qY-1

-	1		( 1+ d )-FII -Ia -13
zq (Y-l)z+s±l

	

q-1

du

u

1(Lt+ p+ s A t+p J s dt
0

'+')e
-2knix

dx .

00
1

	

f
du	 1

=q3

	

uz

	

z(z - 1)q(Y - 1)(z - 1) + s*
qy-1
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Evaluating Il and 12 we derive

with

and

with

11 --Jl+ J

	

1a+r(r

J1= 1 L ~+ q s J I
qY-1

1
f

	

(u+i,3+q-)j duu
qY - 1

I2=J3+J4 --

	

1_ 1) . 5~~-l,

00
J3= 1 LPJ f

	

uu

j4= 1

0

1
qY-1

P . K[RSCHENHOFER AND H . PRODINGER

L'1+ '~}1 duu Z

Cla

U3

s

Let (0 . w),„1= w { q - L (observe
i=1

By the proof of Lemma 1, L(3+q-3i-[P]=O, so that
Jl -J3=0 .

Furthermore, we show that J2 =J4 =0, since

0 < qY-1 +{'+ q ; } <1

and

	

0 < qY -1 +{p} < 1

The first inequality follows by

Y-1

	

1 }0 < q

	

P+ q ;

q f- q
d1

`
1

- q, )+{- (0 . w)4,a)=A .
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Since

In the case iv, < 0 we have

For w i > 0 we have

(13) a .1 =

.s
1 - w,_

	

w(

q

	

q'

<
1-d

+
I

	

2-d , c 1 .
q

-~

	

= q

I
IV,

q

_ d

	

1

1

	

q(q-1)

	

1

	

q .; ~

P1
_S 3+ 1

- 11

	

q ..

	

q .;

the same arguments work for the proof of the second inequality .

Inserting == I + k into T3 ,, C) we get

iv, + d

	

/ 1

	

1

q~

	

q-1 `q - q'

)-

d

	

1 -I S

)=1 .
q - 1 ` q

	

q S

	 1	1		y
2kit

	

+q_3})-b(%(k, 1 -fP}) l

q (y-
	 11) ;(x) for k#0,-f-s

and the formula for hk (k#0) is established .

In the instance k=0, we need

lim (PS(_) .
1

	

'

Using the expansion of s(:, a) about ==1 (compare with [6]) this
limit turns out to be

- q , (1 -y) logq+log 71

( i -f
3-1- q; 1) -log f(1 -frp}) - q;

and a,) and thus ho is computed immediately . [0

We continue our investigation by studying the average of the number
of subblocks tiv that straddle the radix point

37
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LEh1NIA 2 . With w , A , d(w, r) and B„ d(w, r) as in Lemma I resp .
Corr. 1 we have

(14)

0

where E,,(m) is bounded.

PROOF. By Corollary 1

m

J (A,,d(w, r)-B,,d(ii', r)) dr
0

( .^1v, :,(«', r)-Bq.d(t,

s-1 m

S(L ;k l3
q'

j -L q- '

	

) dr

k=1 0

=in .
s
_

, 1

	

;~ (
in
)om S 31 -E„(m)

q'

	

r .

	

q

	

q

(with gg~s( .') from (7)) . 0
Combining Theorem 1 and Lemma 2 yields an expression for

m

J
B,d(W,

	

Q r) dr .

0

This integral equals the "truncated sum"

(15)

	

q -1- d .q

	

B,,d(w, 0)±B,,d(w, 1) + . . . TB,,d(w, m - 1)-1

+
_ d

Bq,d(w, in)
q

1

rather than the desired sum

Bq,d(w, 0)+ ._±Bq .d(1I, m-1).

THEOREM 3 . Let Bq,d(W', n) denote the number of subblocks

r))dr= (s-1)

	

E,~(m)
q

	

m

w in
the < q, d > -representation of n E N a , where w is a sequence of s digits not
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starting with 0 . Then

m-I

	

m
I

	

1

	

Bq ,d(w, m)
In I BQ,d(w, n) = rn f

Bq d(tv'~ r) dry" q-1

	

m
n=0

	

0

(16)

= logQin +Hw(logq m)

	

sq ; l --}-

where H,, is the periodic function analy_ed in Theorem
bounded. Obviously, B q , d(w, m)=0(log M)-

3 . FURTHER ANALYSIS OF THE ERROR TERM E,,,(m)

It is not difficult to see that E,o(m) oscillates in a rather irregular
way . In order to get information about E„(m) we study its average
value

m-1

In
n=0

and prove the following

THEOREM 4. Let w=wl . . .i-vf 0y-' with w j , iv-r 0 0 and {3 be defined
as in Lemma] . Then

PROOF. We have

m-1

	

1
in- -1

1

	

Eu(n) _ __
In E

	

m
n=0

	

n=0 k=0

m-1 s-1

In y yq

k

n=0 k=0

E,o(m)

	

d

	

BQ ,d(w, m)
m

	

q 1

	

m

M-1

(17) m Z Ew(n)=
2q~

s

(q q I)- s

_

2q 1 -
n=0

S--1 2-{qka} 1	 -E-0
(-
m ), m --. 00 .

+ k=r

n
kq

qk )

39

2 and E.(m) is

s-1

q3

	

Z Lqk {P}j
k=0
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where
n

ck

	

q-k S ` L-Ft
-{-

	

J - L
qM1 r

n=1

	

0

Now we have for S`R

n

	

n-1

1 9`

	

E

	

qk r {S}

	

{~1" s} ~L k

0

	

>=0

and therefore, observing

L r+
q3

j-1~~- 0

respectively

13+ qs } ={r}+ I

a lengthy but elementary computation y ie!ds

P . KIRSCHENHOFER AND H . PRODINGER

S-1

	

1

	

qk-11

M >
	 m-

L qk J

	

qk gr,sC
k=0

	

n=0

S-1

	

1
E ak--0( na

k=0

In the following we use that
k-s

qk
p+

qs
()}-

{qk

	

qk-s

+s

n
kq

( {qk 3}- f q k ( 31- Q .~ !~)({qk 3}±€ q"

	

3+
13

} -3

ak =	
2q

k	 q		+

1
-f-q k-s

	

-{-~ {r} - Z

	

-1 qk--'s-q-s .

for 0<ksr-1
-1 for r<k6s-1

which may be verified along the lines of the proof of Lemma 1,
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4. SUBBLOCK OCCURRENCES IN GRAY CODE
REPRESENTATION

A Gram Code is an encoding of the integers as sequences of bits with
the property *.hat the representations of adjacent integers differ in exactly
one binary position . As in [21, we restrict our considerations to the standard
Gray (or bfnar,i • reflected) Ccde . The following table shows the Gtay
Code representations of the first 16 nonnegative natural numbers (n refers
to the number and k to the position) .

Thus we can rewrite 6 k as

qk	a}

	

I k-s ,

	

1
q ..

	

- 2q

which completes the proof of the theorem . Q

r
1

	

0

	

for 0<k<r-1

(	 {q'E 3? - 2
(

	

q A;

L

2k n -1 ' k+1 ?k-1 ?k+1
In the k-th row w e find the nattern 0 1 `

	

0`

	

1"

	

0"

If we know how to count occurrences of subblocks in binary, then
we can count occurrences of subblocks in Gray Code quite easily :

Then k-th bit in the Gray Code representation of an integer is
simply the exclusive OR of the k-th and (k+ 1)-st bits in the binary
representation of the same integer . Regarding that the exclusive OR is
simply representable as addition mod 2 (4±,)) of the concerned bits, the
subblock it = iv . . . . ir s in Gray Code corresponds to one of the two patterns

41

for r<k<s- 1

\ n

k
0 1 1 3 4 5 6 7 3 9 10 11 12 13 14 15

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0

3 1 1 1 1 1 1 1 1
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1- I
u(w)=u 1 . . u,+1 resp . v(t')=v 1 . . v,+-1 where u,= +Q tt' and

	

vt=u;O+ 1 .
1=1

Thus we obtain as a corollary of Theorem 3

THEORE't 5 . Let Bcc (v, n) denote the number of subblocks it in the
Gray Code representation of nE N o, where w is a sequence of s digits not
starting with :ero and let u(w) resp . v(w) be defined as above . Then

m-1
(14)

	

1

	

Bcc

	

n)=
171
n=0

lOeg m
+H

"(`v)
(1og2ln) + Hv(W) (10g .2 111) -

	

4 + 0~
171 ~~

where Hu( ,,, ) resp . Hv(W) are the periodic functions (for the instance q=2 .

d=0) which are analysed in Theorem 2 .
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