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ABSTRACT

This paper deals with the average number of subblock occurrences in the

following representations of integers : the <q, d> —ary representation (with digits d,
d+1,...,d+q—1) and the Gray code representation.

1. INTRODUCTION

In a recent paper [3] P. Kirschenhofer has proved the following
result on the number B,(w, n) of subblocks w in the g-ary representation
of n € N,, where overlapping is allowed and wis a string of digits of
length s neither starting nor ending with 0 :

m—1
0 ”ll_z By(w, m)= logim—(s—1) +Hw(logqm)+E"”(nm) ,
n=0

q.‘l

where H,, is continuous, periodic with period 1 and H,(0)=0and E, is
bounded.

For the special case g=2 and w=1" this result has already appeared
in [5].

The method to estabiish this result is an approach to appiy a method
w hich has been introduced by Delange in [1] where he has analyzed the
sum of digits function.
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GRAY CODE REPRESENTAT(ON 31
(Theorem [)—the Fourier cxpansion of a periodic function appearing in
this average constitutes the next resuit (Thecrem 2). At the cnd of the
section we use the previous results to estabiish the desived average

m—1

1
e B'z,d(W, n)

n=0
(Lemma 2, resp. Theorem 3).

LemMa 1. Let w be u sequence ¢f s digiis not :rariing with Q and
let Aq, olw, r) denote the number of subblucks w in the <q, d>-representa-
tion of the real r 20, where we count all those occurrcnces that are either
entirely to the left or straddle tie radix poine.  Tlen

where

1
3) g=l—(o.Wgu—— " ——
@ e 9=l ¢
ProoF. The k-term in the sum of the Lemma can oniy take the
values 0 and |. In the following we wiil show that it takes the value | id
w occurs as a subblock in the <gq, d>-representation of r (starting with
the &-th digit left to the radix point).

We define the number ¢ by the equation

r
&

i

4

q—1
(The last term corresponds to the digits left of the £-th position.)

Then it follows that

d.g®
qg—1

— (0. W) . ¢* < < —{0 . Wa,a. q*+¢q°

and it can be readily checked that a subbicck w starting at %-th position
corresponds to values ¢ in the interval
d d

B T L ——y
=1 S o T
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Indeed, the k-term of the sum is | in this case. To make the discussion
of the remaining cases for ¢ independent from the special form of w, we
observe that

d 1 d | 1
—_ < - e .+
q—l\l pe )\ (0. Waya < q—l(l pr >+I pe

The remaining intervals for ¢ are covered by
d s d

and

~

In both cases the k-term of the sumis 0. 2

For later use we remark that the proof of Lemma 1 contains also
the following corollary.

COROLLARY 1. The number Bo,a(w, r) of subblocks w in the situa-
tion of Lemma 1 that are entirely to the left of the radix point is given

by
@ Butm =D (| et - =0 )

k2s

Following-the plan indicated at the beginning of this section we turn now
to the investigation of the average of Bq,.(w, i7) :

In a first step we compute the average Aq,q(w, 7).

TdaeoReEM 1. With w and 4,,4(w, r) as in Lemma | we have
m
J Ag,a(w, r) dr =
0

logem
3

(5) + Hy(logem)

1
m
where H, is a continuous, periodic function with period 1 and H, (0)=0.

PrOOF. With the explicit formula for 4.,4(w, r) of Lemma 1 we
get
m

[atnna= 5 (| ssde [ {00 ) o

0 k21
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We observe that nonzero contributions to the sum may originate
only from values of A<</+1 where

I—L 1o am—loga 1+ q—_‘il——)_J

so that
m I+1 m
{
©) [ Auatn, r) dr= E [( |+t || =t | ar
0

It is convenient to introduce the function

7 L e )

Then 28,5 is continuous, periodic with period 1, gﬁ,s(0)=0’ and a

X

0 &, ={(

0

simple substitution (compare with [3]) shows that the sum from above
equals

I+1—=k k—I[-1

l '
ra m(l+1)+ z q %a s (mgq ).

k>0
) d )
With {x}=x—{x| and y=logq< 1+—q—:—-1- ) we can rewrite (6) as

[
— . m. log, m—}--gai (1=y—{—v+log.m})

qS
+mgl Y~ {—r+logim} hﬁ,s(q—1+*r+{—'r+logam} ),
where
R -k k
®) Ay (D= Zq - &g ((x4").
k=20
Putting

©) Holn=1Z=rtal iyt

hg s(qt- YHx}—147)
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the function Hu(x) is continuous, periodic with rericd 1 and H,(0)=0,
and Theorem 1 is established. [J

It is instructive to compute the Fourier coefficients of the periodic
function appearing in Theorem 1.

THEOREM 2. The perivdic function H,(x) of Theorem I has the
following Fourier expansion :

(10) H(x)= z /’z_;-.ezm.k'Y
kEZ
with
fomloge LUZI20D 1 (1 1)
9 S [ (1—{,3}) ([3 2 T IOg q )
(11) hk= E(Zk, 1“"{3'}"‘]—;))-5 (/,A., 1_{6‘}_)__’ k¢0

log ¢ . tx . (1 +uzx)

where {x}=x—{x| denotes the fractional part of x, &, (z, a) the {-function
of Hurwitz, y.=2kzi/log q and B is defined as in Lemma 1.

{
Prcor. Let ‘{=10gq( I+ q—(-l—) and assume y<Sx<vy-1. Then
1—x
Hyo(x)= Lgl-e z-1
and /lk=a/¢+bk
-1
with ak=I qt-? hﬁ S(q"‘) e_zkmxdx,
Y 4
Y+1
]
b= Flf J- (1—x)e "k-”xdx.
Y
It is readily verified that
l 1
- 4(40)
A=)
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—Dkrix

v+ 1
0
g ql—:—r . gs s((].n H-r)e d,\'.

Further = E

’

r=0
Using the substitution x=1—r-+logu we get

%0 g‘g‘s(u)
2+ 1k

dit.

"~ logq j u
gv—1

With the abbreviation

o gs’s(“)
@= | e
gr—1

du

(12) (DB

)

A}

we may write -~

ar . 0, s(l'{"Xk)-

~ logg

In the following, we compute CDg,s(z) forz#1:

with
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Evaluating /; and /; we derive

[1=J1+J3+__(-_'— C(- _{B+q—s})
. du
with ———L{H—-——-—J j
qY—’l
=y
Jo= i— I [ll+______{2:1-q i du
g7 1
and Li=Ja+ )i F T‘I‘:T) Ze—1, 1 —{8)
1 T d
with Jg" P LBJ Jf W
gv—1

By the proof of Lemma 1, [B+¢~*|—(f]/=0, so that
Jl_’Ja:O.

Furthermore, we show that J,=J/;=0, since

0 < qY“1+{ a4 } <1

and 0<qt—l4(@r <1

et

F dl ( ‘;“‘;T)H- © . What=4.

The first inequality follows by

Q|

s

Let (0. w)g,u= z wy g~ (observe w,3%0!).

i-=1
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In the case w, < 0 we have

- 2—d
< lqd+717= g St
For w; > 0 we have
1 Wy N Wy da /1 1
A=yt T2 et g - )

Sy (USSR DO
= 4= ¢t )T g=1\q ¢
. 1 |
Since = ( 8 ——,—}———f-
{3} 187 pE
the same arguments work for the proof of the second inequality.
Inserting z==1+ X, into (D.G,S(:) we get

(13 o= s (2 (4 1B+ -3 1=(6)

1

=G Dt ) or ksto
and the formula for Az (k70) is established.

In the instance k=0, we need

-

Using the expansion of §(z, a) about -=1 (compare with [6]) this
limit tarns out to be
— L 1-9) logg+10g { 1—{34-‘—}) —log [(1—{8})— ——
qa < \ h qo' S L qs 3
and a, and thus A, is computed immediately.

We continue our investigation by studying the average of the number
of subblocks w that straddle the radix point :
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LEMMA 2. With w, Aqa(w, r) and Bg,u(w, r) as in Lemma [ resp.

Corr. [ we have

m

1 —1 ;
(14) _/;j (Aasu(iv, r)— Ba.g(wy r)dr= ({7_) - En('tm)
0
where E (m) is bounded.
Proofr. By Corollary 1
m
g (Aq,d(“’) r)—BQﬂi(“') r)) df
0
s—1 m
= J([_%TB-:-—I‘ J—L—’—— +8 |)ar
q q° q°
k=1 0
s—1 sl m s—1

(with 3{3,5(") from (7). O

Combining Theorem [ and Lemma 2 yields an expression for
m
I By,a(w, r) dr.
0

This integral equals the ‘“‘truncated sum”

(15) _qq:_‘_]_ll_—-— - B‘hd(“’) O)-{-qud(u'y 1)+ ...+Bq,d(W', m—l)

—d
+ 71 By,a(w, m)

rather than the desired sum
BQrd(W’ O)+—+BQ~4(“‘, m—l)-

THEOREM 3. Let Bq,a(w, n) denote the number of subblocks w in
the <q, d>-representation of n€ N,, where w is a sequence of s digits not
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starting with 0. Then

—1 m

1 1 d  Bg,a(w, m)
—_— —_ , L Y Q4
LS Buato, m) == [ B, 1) dr fp Pt

n=0
(16)
_ loggm . _s—1 E,(m) | d Bq.a(w, m)
- q° +H"’({009 m) - q° + m T g 1 - o

where H, is the periodic function analyzed in Theorem 2 and E,(m) is
bounded. Obviously, Bq,s(w, m)=0(log m).
3. FURTHER ANALYSIS OF THE ERROR TERM E,(m)

It is not difficult to see that E,(m) osciilates in a rather irregular
way. Inorder to get information about E,(m) we study its average

value

and prove the following
THEOREM 4. Let w=wy...w, 0°7" with wy, w, 3 0 and 3 be defined

as in Lemma I. Then

1 ml q°’—q s—1 1 =
L — _ 2 k
(17) m Ew(n) 2‘[# (q - 1) zqa qs z l.q {B}J
n=0 k=0
s--1 %
2 S 2L (L) e
k=r
Proor. We have
[ m=l | m=l s—1 i
— — ey e e k e
N z Eul) m z Z 1 g3,3< q* )
= n=0 k=0
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S -

1 ! m— ] el X n
T Zo{‘ g _]”;0[] gﬁ,s(?‘—>

s—1

=5 ol

k=0

s e 5 (e +00 Jren ([0 Jon)
=0

and therefore, observing

S RPN
8+ 7 18/=0

respectively

{o+ )=+ L

a lengthy but elementary computation yields

( {¢* ﬁ}—,{q" (34-—;——)})( {g* S}J.—{ q* (B+~;S )}—-3)

qk

-

i

Cpr=

In the following we use that
1 ks for 0<ik<<r—1
k +______ }- k — { q <N
{q ( : q ) a" 8} g=* -1 for r<k<s—1

which may be verified along the lines of the proof of Lemma 1,



GRAY CODE REPRESENTATION 41

Thus we can rewrite o, as

-
; 0 for 0<k<r—1
kg —{gt By 1 ... 1
__{:__}_:L__}__s_qk—s.j_ﬂ)_q-_ <
q < < [ {g*8}-2
, ——7—-— for r<k<s—1
L

which completes the proof of the theorem.

4. SUBBLOCK OCCURRENCES IN GRAY CODE
REPRESENTATION

A Gray Code is an encoding of the integers as sequences of bits with
the property that the representations of adjacent integers differ in exactly
one binary position. As in [2], we restrict our considerations to the standard
Gray (or binary reflected) Code. The following table shows the Giay
Code representations of the first 16 nonnegative natural numbers (n refers
to the number and & to the position).

N\ n
N\ 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k ™\
;————
0 1 1.0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 111 0 0 O O 1 I 1 | 0 O
2 11 1 1 1 1 1 l l 0 0 © 0
3 I 1 l 1 l 1 1 1

, . 2k AkTl Ak+l kil 9ktL
In the 4-th row we find the pattern 07 1° - 1= 0-

If we know how to count occurrences of subblocks in binary, then
we can ccunt occurrences of subblocks in Gray Code quite easily :

Then &-th bit in the Gray Code representation of an integer is
simplv the exclusive OR of the k-th and (k+1)-st bits in the bincry
representation of the same intcger. Regarding that the exciusive OR 1s
simply representable as addition mod 2 (@) of the concerned bits, the
subblock w=w ... w, in Gray Code corresponds to one of the two patterns
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i1
u(wy=u, .. ugs, resp. v(w)=v, .. vy, where u;= .@1 w; and  vi=u;P 1.
/:

Thus we obtain as a corollary of Theorem 3 :
THEOREV 5. Let Boc (v, n) denote the number of sutblocks w in the

Gray Code representation of n€E N . where w is a sequence of s digits not
starting with zero and let u(w) resp. v(w) be defined as above. Then

| m—1
(18) = D, Bee (=
n=0
!Og': m [ ¥ 2 / l
_.-;v—*TH“(W)([Oge ")+Hy(w)(log2 m)—~ ? +0\7 )’

where H u(w) TESP- Hv(w) are the periodic functions (for the instance g=2,

d=0) which are analyzed in Theorem 2.
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