SOOCHOW JOURNAL OF MATHEMATICS
Volume 9, December 1983

AN ELEMENTARY APPROACH TO THE STACK

SIZE OF REGULARLY DISTRIBUTED
BINARY TREES

BY

- HELMUT PRODINGER

For the sake of brevity we assume that the reader has a
certain knowledge of [2]. Let 7T be a binary tree with n leaves.

Evaluating 7" in postorder it is assumed that in one unit of time a
node is stored in the stack or is removed from the top of the stack.
Consider the number of nodes stored in the stack after ¢ units of
time. Let R;(», t) denote the d-th moment with respect to the
origin of this statistic. In [1] R. Kemp was able to produce an
exact form'ula for Ri(n, t) by use of 2 combinatorial identities.

These identities are generalized and more easily proved in [3]. As
stated in [2], a similar approach would give exact formulas for
Ri(nt), d odd, but not for even d. For that purpose R. Kemp used
a complex variable approach to give asymptotic equivalents for the
numbers R;(#, ¢), assuming that 2, £—> o and t > 2, 0<p <1, p
a constant. He obtains

Rd(ﬂ, t)

='z-18 2041 P (£222V5 (a1 — )% + O(mte-07)

(1)

Here we show that it is possible to give exact formulas for R;(#, t)
for all d by elementary methods. For instance, we give a formula

for Rs(#:, t) from which an exact formula for the wvariance can be
obtained by

o°(n, t) = R:(m, 1) — Ri(m, t)

and Kemp’s formula for Ri(#n, 1) (see [1]).
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Ri(n, 2t) =
L (n—1)»n
4y PlanibD- Bt -d—1) ¥

’ = 1

: Gog - 2f — 1 - 7
with
 (2t\ (20 — 2t\[ 29\ !
o, t)”(t)( n—1 )( n) '
It is known [2] that
R;(9, 2t + s)

= 2(2n — 1) 2n \ !
(3) (2t+s)(2n—-2t——s)’(” )
. 3 (2h 4 5)FY (%tj;:)( nzf_ 7Ets“___sk) :

k=0

Let

(4) f(d, s; m, n): = Z (2R + S)"( ?,,m_—l—ks)(%,”j;)r

k=1

d s, m, ne N, We propose to show how a closed formula for
f(d, s; m, n) can be obtained which is obviously equivalent to the
same problem for Ra(:, t). The method is essentially included

in [3].

Theorem 1. The following recursion holds for the numbers

f(d, s; m, n):
(5) f(d + 2, s; m, n)
— (2m +s)? f(d, s; m, n) —4(2m +s): f(d, s; m—1,n).

Here, (2)x denotes the falling factorials.

Proof. Since

@ o (WesSEan. (e Nimihis) (fnts)
and
(7) d(m—B)Y(m + k+s)=2m+s) — (2k + 5",

a rearrangement of (6) and summation over 2 = 1 gives (5). t1
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So if we have formulas for d.= 0 and 1, we have solved our
problem. f(1, s; m, ) is known [3]:

_ _ _(2m + s (2n+s mea
®  FLsmwm=(MFENBS e T
Theorem 2.
f(0, s; m, n)
(9) =_1__[(2m+2n+23)__ Z(2m+s)(2n+3)]
9 m+ %+ S e\ m+ K n+k/J

Proof. Let without loss of generality m < 7.

T (2mk+ s)(m+2::_—‘l_-ss*k) + (me-l- s)(znn+ s)

0<k<im-s
- (2m+s)( 27 + S )
ol ., k n—m+ kK

___(2m+2n+2s)+(2m+s)(2n+s)
m -+ n -+ S m n

- [(2m + s \(2n + S
—f 5 (m+k)(n+k)’

e | 2m + s \(2n + S
e mimyam s Jiinct#) sin

Obviously, (9) is only useful for small values of s. However,

in practice we require just s=0 and s=1 By doing some

computations using Theorem 1 we obtain

Corollary 3.

: I+ IN)Y A
(10) 2 0; mom) = (T2 __BR .
Im + 2n Smn (3mn — m — n)
41 3 ; :( ) ¢ ; 3 | ®
(11) f4, 0; m, %) m + n (2m+2n—-1)(2m+2n-—3)
f(2, 1, m n)
=}(2m+2n+2)_2m+2n+1+4mn
) . o\ m+n+l om + 2n + 1
(12 om+ 1\/2n + 1
- e
2mn om + 2n + 2
& KO TrwWwy ( )
- ) om+on+1\m+ntl
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f(da 11 m! ”) | ’
& (2m + 27 + 2) (2m+1)(2n+1)(12mn+2m+2n—1)
o\m+n+1 (2m+20n+1)(2m+20n—1)
om + 1\/2n + 1
(13) o ( m )( 7 )
= f(2, 1; m, n) | _
+ (Zm + 29 + 2) 6mn(2m + 1) 2n + 1) =
m+n+l/) Cm+2n+1)2m+20—-1)
Since _
Rd(ﬂ, 2t + S)
= 228 — 1) | (211)“1
» g (2t +s)2n—2t—s) \%/
4) ' ' o280 +s\[2n—2t—s
" '[s“( ; )( n — t )

+f(d +2,s; 1, n-——t-——s)],
an obvious computation gives

Theorem 4.

Ri(n, 2t) = 12t(nn — t) — 491’
27 — 3
35 12
Ruls, 28+ 1) = tn—1t—1) +2n— 3 R
2n — 3

It is trivial to obtain an asymptotic formula for R:(#, 2),
9% — oo, t— pan.
Tt is worthwile to discuss the limitations of our elementary
approach: A general asymptotic formula like (1) cannot be obtained,
although the recursion (5) seems to be promising. But unfortunately
the two terms of the right-hand side of (5) are of equal rate of
growth.
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