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Abstract. The skip list is a recently introduced data structure that may be seen as
an alternative to (digital) tries. In the present paper we analyze the path length of
random skip lists asymptotically, i .e. we study the cumulated successful search costs .
In particular we derive a precise asymptotic result on the variance, being of order n2
(which is in contrast to tries under the symmetric Bernoulli model, where it is only
of order n) . We also intend to present some sort of technical toolkit for the skilful
manipulation and asymptotic evaluation of generating functions that appear in this
context .

1 . Introduction and main results

The skip list has recently been introduced by Pugh [15] as an alternative data structure
to search trees . We give a short description in the next paragraphs and refer the reader
to [13] for more detailed information . In [1], [13] some interesting analytic aspects
are obtained about the average case performance of random skip lists, especially on
the search costs. Analyzing search trees, probably the most important parameter is
the path length, i.e . the sum of the costs to find all the elements in the data structure,
("successful search"), compare [4] and [12] . This parameter has not yet been analyzed
for the skip list, and we devote this paper to its study .

In a skip list n elements (n > 1) are stored in a set of sorted linear linked lists
according to the following rule : all elements are stored in sorted order in a linked list
named "level I", and each element stored in the linked list "level i" is included with
(independent) probability q (0 < q < 1) in the linked list "level i + 1" . A header refers
to the first element in each linked list and also contains the total number of linked lists,
i.e. the "height" of the data structure. The number of linked lists which an element
belongs to is constant as long as the element exists in the skip list. Therefore it suffices
to store each element only once, together with an array of horizontal pointers that
refer to the respective consecutive elements of the linked lists the element belongs to .

If we denote by ai the number of linear linked lists that contain the i-th element,
it follows that a skip list of size n can also be described by the corresponding n-tuple
(a,, . . . , an) . In the sequel we adopt the following model of random skip lists (compare
[1], [13]) . Each ai E N is the outcome of a random variable Gi that is distributed
according to the geometric distribution with parameter p, i .e. Prob{Gi = k} = pqk-I ,
where q = I - p. The random variables are independent .
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The reader is warned that in the earlier papers the roles of p and q are interchanged .
Nevertheless, we find it easier to stay with the present notation that is classical in the
context of the geometric distribution .

The search for the i-th element starts at the header of the top level linked list.
This list is followed until the index of the next element in the list is greater or equal
to i (or the reference is null) . In this instance the search continues one level below .
The search terminates at level I with an equality test as the last comparison .

In the figure below we depict the search path for the 4-th element in a random
skip list of size 4 .
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Following [13] we define the search cost for the i-th element as the number of
pointer expections excluding the last one for the equality test (i.e . 13 in the example
above) . Each instance of a pointer inspection is marked by a dot in the figure . Observe
that the last pointer expection comes up with the third element at level 1 . The search
cost may be split up into the sum of a "vertical cost" corresponding to pointer inspec-
tions of pointers refering to elements at a position > i (that initiate the continuation of
the search one level below, 11 in the example) and a "horizontal cost" corresponding
to the remaining pointer inspections, i .e. the number of horizontal steps on the path
from the header to the i-th element (2 in the example) . We define the horizontal path
length X, = Xn (p) of a skip list p containing n elements as the sum of the horizontal
search costs of all elements in p . The vertical path length Yn = Yn (p) is defined
analogously. Finally, the total path length or total cost Cn is X, + Yn . Xn , Yn and
Cn are random variables under the above defined probability model for random skip
lists .

It is an easy observation that the vertical search cost for each element equals
the height of the skip list, so that Yn(p) is n times the height of p. The horizontal
search cost is more intricate . Let us return to our alternative description of the skip
lists as n-tuples (a, , . . . , an ) from above. The height clearly equals the maximum of
(a,, . , an ) . The horizontal search cost is zero for the first element . Let now i > 2.
If we follow the path from the header to the i - 1-th element in reverse order we find
that for the i-th element the horizontal cost is the number of right-to-left maxima in
(a,, . . . , aa_, ), i .e. the number of elements aj (1 _< j < i - 1) that are larger than or
equal to aj , aj+ ,, . . . , ati_ 1 . (Observe that the convention to call a1_ 1 itself a right-
to-left maximum ensures that the horizontal step connecting the path with the header
is counted, too.) We may conclude that the horizontal path length of (a], . . , an ) is
the sum of the numbers of right-to-left maxima of the sequences a, , . . . , ai_ 1 for
2<i _<n.

The number of right-to-left maxima of a,, . . . , an is a well understood parameter
in the context of random permutations, see [ 10], [ 111 and [ 16] . In the context of the
geometric distribution it was analyzed in [141 .
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With respect to expectations, the horizontal path length is simply the sum of all
the horizontal search costs . This is also easy to check, comparing [14, Lemma 2] and
our formula (2 .7) . However, with respect to variances the parameters are different,
and the path length has proved to be more interesting . (For tries, Patricia tries and
digital search trees, these analyses are quite challenging and are to be found in [7],
[8], [9] .) The results about the variance of the horizontal path length Xn and of the
total cost Cn are thus considered to be our main findings in the present paper. We
also intend to present some sort of technical toolkit for the manipulation of generating
functions that will frequently occur with the analysis of skip list parameters .

In the following we summarize our main results . Here and in the whole paper,
we will use the handy abbreviations Q = q -I and L = log Q .

For the sake of completeness we start with a formulation of the asymptotics of
the expectations . Observe that these estimates can also be computed from the results
of [13] on the search cost of specified elements, though the notion of path length is
not considered there . (iii) is equivalent to [13, Theorem 4] .

Proposition 1 . (i) The expected value E(X,) of the horizontal path length in a random
skip list containing n elements fulfills for n --> oo

- 1E(X,,,) = (Q - 1)n (logQ n + 'YL -
1
2 + 1

L 6 1 (logQ n)) + O(log n)

where -y is Euler's constant and 61(x) _

	

T (-1 - 27i )e2k-7rix is a continuous
kg0

periodic function of period 1 and mean zero . (T is the Gamma-function .)

(ii) The expected value of the vertical path length fulfills for n -* oo

7E(Y,~) = n logQ n + n ( L +
1
2 - 1L62(logQ n)) + O(log n),

where 62(x) _

	

2kLi)e2knix .
Lkq0

(iii) The expected value E(Cn ) of the total cost fulfills for n --* oo

1

	

+1E(Cn) = Qn logQ n + Ti( (7	L	 - 2 +1+
L

63 (logQ n)) + O(log n)

where 6 3 (x) = 6 1 (x) - 62(x) .

Remark. As a consequence of the exponential decrease of the r-function along vertical
lines (compare (2 .37)) we have that the amplitude of the functions bi(x) here and in
the sequel is very small for all reasonable values of q, e.g . 0 .1 < q < 0 .9 .

The asymptotic equivalents for the second moments of the path lengths are given
in the sequel, and the two corresponding theorems are the main results of this paper .

Theorem 1 . The variance Var(Xn ) of the horizontal path length in a random skip list
containing n elements fulfills for n -; oo

Var X

	

2 2	Q+ 1
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7r2

	

87r2

	

2
( ) = (Q - 1) n

2(Q - 1)L + L 2 6L2 + L2
h("

L ) -
c + ba(logQ n)

+O n l+E
) I

	

E>o,



where

where
a2 =

Finally the following theorem holds .

Theorem 2. (i) The covariance Cov(Xn , Yn ) of the horizontal and the vertical path
lengths in a random skip list containing n elements fulfills for n --+ oo

1

	

7r2

	

2

	

2
Cov(Xn , Y,.,) _ (Q - 1)n 2 { L2 6L2 + L2 h ( 4L ) - a + L

	

Qk 1- 1k>I

h(x) =
ekx

)2 ,
-1

~

	

1
aI

= L
k> 1

k(L 2 + 4k27r2 ) sinh(2k7r2/L)

and 84(x) is again continuous, periodic of period I and mean zero .

With regard to the vertical path length, i .e . n times the maximum element, we
have from [5] or [17]

2
Var(Yn) =

n2 6L2 + 12 - a2 + 85(logQ n) + O(n I+E ),

k
- 1) 2 + 86(logQ n) + O(n I+E ),

with h and a1 from Theorem 1 .
(ii) The variance Var(Cn ) of the total cost fulfills for n --~ oo

2

	

2

	

2
Var(Cn ) _ (Q2 - 1) n2 2L + L 2 6L2 + L2 h ( 4L )

+ 2(Q - 1)n2{
1

	

1

	

k

L k>1 Qk - 1

	

k i (Qk - 1) 2
2

+ n2
6L2

+
12

- a2 + 87 (logQ n) + O(nl +E )

Theorems I and 2 show that the variances of the path lengths are of order n2 ,
whereas the variances of the corresponding parameter for regular symmetric tries
(under the Bernoulli model or the Poisson model) are of order n . This means that
random skip list parameters are not as closely concentrated around their expectations
as the corresponding parameters for tries .

It is interesting to investigate the leading term of the variance of the total cost
(Theorem 2 (ii)) for different values of q (resp . Q = q-1 ) numerically. It turns out
that the constant K in Var(Cn )

	

n2(K + 87(logQ n)) takes its minimum value for
q = 0.31 . . ., which differs a little from q = e = 0.36 . . ., where the main term of

- a 1



q
0 .1
0 .2
0.3
0.31 . . .
0 .4
0.5
0.6
0.7
0.8
0.9

K

10.57 . . .
3.16 . . .
2.15 . . .
2.13 . . .
2.44 . . .
3.66 . . .
6.41 . . .

12.96 . . .
33.03 . . .

149.35 . . .

the expectation takes its minimum . Nevertheless we can conclude that for values of
q close to e, the variance is close to its minimum, too. Below we give a small table
of q = Q- ' and the corresponding values of the constant K.

The proof of the theorems is given in the next two sections . Section 2 contains the
considerations on the horizontal path length . It starts with a set-up of the appropriate
generating functions, presents a transformation that allows to express the coefficients
as complex contour integrals in a very efficient manner, and finally reveals the asymp-
totic equivalents of the expectation and the second moment as the sums of residues at
certain poles. Section 3 contains the technical details concerning the second moment
of the total cost. In Sect. 4 we present an alternative representation for the constants
in the leading terms of Theorems 1 and 2 which is better suited for numerical evalua-
tions if q is close to 0. For this purpose a series transformation result has to be proved
that is of its own interest . In the final Sect. 5 we add some results on parameters that
can be analyzed using the same toolkit as prepared for the analysis of the path length .

2 . The horizontal path length

We start from the interpretation of a skip list p of size n + 1 as a finite sequence
(a,, . . . , an+,), n > 0, ai E {1, 2, 3 . . . . } . The horizontal path length Xn,+,(p) is the
sum b(p) of all numbers of right-to-left maxima in the subsequences (a,, . . . , a 2 ),
I < i < n, of p' = (a, , . . . , an ) . In order to obtain an expression for the corre-
sponding probability generating function it is convenient to start from the following
combinatorial decomposition :

Let m be the maximal element occuring in p' . Then we can write p' in a unique
way as

p=amr, where a E {1, . . .,m- l}

	

1r E {1, . . .,m}

	

(2.1)

(fixing the leftmost occurence of the maximum m) . From this decomposition it follows
that

b(p') = b(amT) = b(a) + b(-r) + 1irI + l, b(E) = 0,

	

(2.2)

since the contribution of the leftmost maximum is 1 plus the number of the succeding
elements. The reader might observe that relation (2.2), in the context of permutations
p' (and thus binary search trees), describes the right-sided path length . However the
probabilistic models are quite different. (Compare e.g. [101, [16] .)



We introduce the bivariate generating functions P-'(z, y), where the coefficient
of z"y3 is the probability that a skip list p with n+ 1 elements has maximum element
(of the prefix p') m and horizontal path length j (of p) . P5m (z, y) and P<-(z, y)
are defined analogously . Then relation (2.2) translates into the functional equation

P-'(z, y) = pgm-l zyP<m(z, y)P <_m(zy, y), P--0(z, y) = 1 .

	

(2.3)

Although nb simple closed formula for the solution of (2.3) is available, it allows to
extract sufficient information on the moments of the path length .

If we set F* (z) = ay- (z, 1), where * stands for = m, < m or < m, the generating

function F(z) _ En>o E(X,,,+1 )zn of the expectations is obtained as

F(z) = lim F~m (z) .

Performing some algebra it translates into

m-1 z
F<m (z)Qm~2 = F<m(z)Qm - 11 2 + p	

Qm]
	 ,

which can be solved by iteration, observing that F-<°(z) = 0 :

z

	

(2.4)F-'5-(z) = "'

Now we let m tend to infinity and obtain

(2.5)

K<m(z ) :=
dz F

<m(z) =
q

.

	

n

The generating function H(z) of the second factorial moments can be obtained in
the same way, although the computations are much more involved . We use the no-

tations H*(z) = aay, (z, 1) . The second derivative of (2 .3) w .r .t . y at y = 1 involves

additionally the quantities

a2p <m

	

2(1 - q- )2
az2 (z ' 1)

	

QmnJ 3

	

,

and
m 9

	

2z(1 - qm) m

-1
Q7']2 + Qm1 3

The derivative of (2.3) w.r .t . y at y

M-00

= l- involves the terms

I 1
m

1 - qaP :~m (z, 1)p~m(z , 1) =

	

=

	

and

	

=
I - z(1 - qm) QM]]

	

az

	

Qm12

and reads

F<m(z) - F<-(z) 1 F<m (z)z(1 - qm )

	

F5 m(z)

pq m-1 z - Qm]lQm +

	

+- 11 + Qm]J2 Qm - 11 Elm - 11

	

QMA
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In this way we find

H<' (z) - H<' (z) _

	

2z (l - q')
	 +	

2z
K<-(z) +	

I

	

<,,,-	 H- (z)pqm- 1 z

	

IM - 1 D Qmj3 TM- 1]

	

QM- 1]

•

	

l
H<- (z) +	2	F~"L(z) + 2 F<- (z)

QmD

	

ffm - 11

	

QmD

•

	

2z(1 -q') F<m(z) + 2F'~m'(z)F<m(z) .TmD2

Again we get a first order difference equation

H<m'(z) ffm]2 = H<m'(z)Qm - 1]2 + 2pq''-l z . z (I - qm) + z f m]K<m'(z)

•

	

QmDF~m'(z) + Q	
QmD1D

F<m(z)

•

	

Qmf lm - 1DF_<m(z)F<m(z) } .

This equation can be solved for H~m(z) by iteration ; performing the limit for m -; oo
we finally achieve the generating function H(z) :

( )

	

p

	

z

	

p

	

z
H z = 2q

	

-QZD2

	

q(1 -

2

	

2

	

q2+3p

	

z
q

	

(1 -
z) I<j<i QiDQjD

2

z2	 q2+~•

	

4 (P)2 q(1 _
z)2 QiD2 QjD1<i<2

z2

	

q2+j
•

	

2
(P)2

q(1 - z)2 QiDQjD 2l<j<2

(p )

	

Z2

	

q2+~
•

	

2 (q/ (1 - z)2 l<j<2 UM - 1DU

z3

	

i+i+h
•

	

2 (q/3 (1 - z)2 . ~iDQi 1DQjDQhD
i> 1<j<il<h<2

Now we turn to the evaluation of the expectations E(Xn ) . Since the generating
function F(z) is not too complicated, we find, e.g . by partial fraction decomposition
and extracting the coefficients, that

E(X") = [ z"- I ]F(z) = - 2

q i

]+n+Qi (1 -q i )
n ,

(2.6)

where Q = q -1 , or, by expanding the binomial and interchanging the summations,

(2 .7)



1
E(Xn) Q

k=2

1: ( k ) (-1)k Qk_	1 -

1

In order to get the asymptotic equivalent for E(X n ) we might apply a Mellin trans-
form approach (cf . [4]) to (2.7) . Alternatively, the expression (2.8) can be rewritten
as a complex contour integral (Rice's method), namely

E(X",) = q • 2~ri

	

B(n + 1, -z) Qz _~ -1dz ,

	

(2.9)

where B(x, y) = r(x)r(y) is the Beta function and the contour C encircles the polesr(x+y)
z = 2, 3, . . . , n . Now the asymptotics are obtained by extending the contour C "to the
left" and collecting the additional residues . (Compare [3] for technical details of this
procedure.)

In the integral (2.9) we have additional poles with real part larger than zero at
z = Xk, Xk = jogQ , k E Z. The computation of the residues is standard and can be
performed e .g. by MAPLE . It yields for the double pole z = 1

L)
Resz=, B(n + 1, -z)

	

1
QZ-t

-
1 = Ln (Hn-1 - 1 - 2 ,

with L = log Q and Hn the n-th Harmonic number, and thus the asymptotic contri-
bution to E(Xn )

P L ( log n + 7 - I - 2) + O(log n).

(2 .8)

Similarly the simple poles z = 1 + Xk, k ' 0, contribute

q L E T(-1 - Xk)n'+xk (1 +O(n)) .

	

(2.10)
kq0

Collecting all contributions we have Proposition 1 (i) .

In the sequel we concentrate on our main goal, namely the computation of the
variance Var(Xn ) . We have

Var(Xn) = [zn- ' ]H(z) + E(Xn ) - E(Xn ) 2 ,

	

(2.11)

so that we need a well suited expression for the coefficients of H(z) .
For this purpose it is extremely useful to start with the following technical obser-

vations . In [2] Flajolet and Richmond made extensive use of the relation

(z)

	

an z_

	

n

	

1 A (
WW)

=

	

(k)
ak wn .

	

(2 .12)A

	

~---~
n>O

	

1- w

	

1-

	

n>o k=O

Of course this relation can be inverted to read

1
A(z) -

	

( k ) (- 1)k f (k)) zn ~--~ 1 - w
A
(w -n>0 k=o

f(n)wn .

	

(2.13)
n>O

The alternating sum can now be rewritten by Rice's method (compare above), and in
this way we find



Lemma 1. Let A(z) be a formal power series and

fn = [w12 ) 1 AC w ~,

	

n > 0

	

(2.14)
1-w w-1

with fo = f1 = . . . =f,-, =0. Then

[z n]A(z)
= 2ri j

B(n + 1, -z) f (z)dz,

	

(2.15)
C(s, . . .,n)

where C(s, . . . , n) encircles the poles z = s, s + 1, . . . , n, B is the Beta function and
f (z) is analytic inside C with f (n) = fn for all n > s .

The following generalization will be useful .

Lemma 2. With the assumptions of Lemma I we have

Proof. With z = w' 1 we have (1 - z)-r = (- 1)r Z, , so that

[z 12 ](1 - z) -' A(z) _ (-1)r[zn+r)wTA(z) .

The result follows now from Lemma 1 . 0

In order to compute the coefficients fn in (2.14) for the formal series A(z) occuring
in our problem we will frequently apply

Lemma 3. Let C and D be formal power series . Then

and

[zn)

	

1 r A(z) = (-1)
(1 - z)

	

27ri

]

i>1

[w n ]

i>O

C(wgz) Qn l- 1 [wn]C(w),

	

n > 1,

	

(2.18)
i>I

Qn _

I<j<i

I

r

m=1

1
C(s+r, . . .,n+r)

C( q1 ) =

	

1

	

[wn]C(w),

	

n > 0,

	

(2.17)
1 - qn

	

-

n
iC(wgt) =

	

n > 1,

	

(2.19)(Qn - 1) 2 [wn]C(w), -

C(wq`)D(wg3 )
<j<i

I

	

n

	

I
[w
m)C(w) . [w'-m)D(w),

	

(2.20)_ gm

C(wgt)D(wqj)

B(n + r + 1, -z) f (z - r)dz .

	

(2.16)

1
[wm]C(w)

[,Wn-m
,,, - 1 ]D(w), (2.21)



Proof. Immediate. D

Now we are ready to express [zn-1 ]H(z) as a complex contour integral . We confine
ourselves here to show how the method works for two of the seven terms in (2.6) .

Let us start with the relatively simple first one, namely

i
A 1 (z) _ ( 1 z )

	

q12 =
: ( l I	Z)2 A1(z) .

Qi>1

With the substitution z = w"' I we have

1 _ l -w
Qi]

	

1 - wgti

and therefore

1 1wA1Cww 1) =-

From Lemma 3 (2 .18) we find

Here we have

	 1 A7	w l

	

E	S<z(w)5'<i-1(w),

	

(2.26)
1 -w

	

Cw- 1/

	

i>1 (1 -wgi)(1 -wqi -1 )

where

S:5 t(w) =
1<j <i

Now, a partial fraction decomposition gives

A 7 (z)

I

(1 - wqt) (1 - wq

3

(1 -

q

z)2 i>1 l<j<i I

	

i Qijffi - I]Ulffhl

1)

so that the whole expression (2 .26) telescopes to

A7(z) .

	

(2.25)

wqJ
- wq-7

i+j+h

n

Therefore, by Lemma 2,

[zn-1 ]A1(z) = 2i

	

1

	

B(n + 2, -z) Q Z 2 21 dz .

	

(2.24)

C(3, . . .,n+l)

The most complicated term in H(z) is

1

	

wq2

/Q - 1 ( 1- wqz - I

	

1- wqz '

(2.22)

(2 .23)



-1

	

w S< 1(w)S<o(w) +

	

wqz	q	+	
wq"+1

	

S<i(w)J .
Q - 1 ( I - q

	

- wgti (1 - wq~ 1 - wqi+1 1
/>

Since S:S 0(w) = 0 we get with Lemma 3 (2 .20)

1
A7 (w

	

_

	

1

	

1

	

n-1

	

1
-w

	

w-1
)

	

Q-IQn- m=2 - qm

2

	

2
X [wm ]

	

w)+	
w q
		1 .

	

(2.27).
((1 - w

	

(1 - w)(1 - wq)

A short calculation shows that
2

	

2
[ wm] (~w

	

+	wq	 = m- 1+I (1
1 - w

	

(1 - w)(1 - wq)

	

Q - 1

so that finally (2.27) is equal to

1

	

1

	

n- 1

	

n-2 n-1

	

-2
Q-IQn-1

	

2 + Q-1
+ m_

	

-1

It is not difficult to find an analytic continuation, if we observe that
n-1

~
m-2

	

m-2
Qm-

	

M-1

	

Qn+m
m=2

	

m

	

m

Altogether Lemma 2 yields

[zt1-I ]A7(z)

	

2
I	 1 	B(n + 2, -z)	I	1Q	 1

f

	

Q z-2
C(4, . . .,n+1)

z-3

	

z-4

	

m-

	

z+?n-4
x ( 2 + Q - I +

	

Qm-1

	

Qz
m>2

	

m 0

Observe that C(4, . . . , n + 1) may be replaced by C(3, . . . , ?l + 1) since z = 3 is a
removable singularity of the integrand .

The remaining sums Aj(z) in expression (2.6) for H(z) can be treated in a similar
way . Collecting all contributions we find

Lemma 4.

[zn-1 ]H(z) = 2(Q - 1 ) 2 . 27ri { f
C(2	)

1
X z-2-

	

+a-
Q-1

+

C(3, . . .,n+1)

B(n + 2, -z)

M>0

I
Qz-2

	 - lx((z-3)(z- 1) - Q	+za-z

- QI-m

(2 .28)

/ dz . (2.29)

1
B(?t + 1, -z) Qz-1 - I

1
/ dz

Qz+m, 2
m>0

1I dz

	

(2.30)



With a = Em>1 Q ,"- 1 .

In order to get the asymptotic behaviour of [z'- ' ]H(z) for n oo we extend
the contour of integration to a large rectangle and shift the left side to the line
Re z = 1 + E, E > 0. Then [z"-1 ]H(z) equals the sum of residues at the additional
poles included in the contour with an error term of order O(n 1+E) (compare (3] for
technical details of the estimate of the error term). In our instance the additional
poles originate from the second integral, and they are located at z = 2 (triple) resp .
z = 2 + Xk, k E Z \ {0} (simple). The computation of the residues can be performed
by hand, or, more preferably, e .g. by Maple, and we find for the residue at z = 2

2(Q -
1)2 n + 1 ~H,2,_i

+ Hn2) 1

	

Hn
1 (1 + 2 )2

	

L2

	

L2

	

L

+ 3 +
L2

- 2(a +,3) + 2L
+ (Q 1 I )L }'

	

(2.31)

where L = log Q, H,,, resp . H(,,,2) are the harmonic numbers of first resp . second order,
and ,0= E 1m>1

(Qm- 1 )
2 .

The asymptotic equivalent of (2 .31) is

2 g2
2(Q - 1)2 n12 Qn + n2 logQ

n CL 2 L l

2 1

	

1

	

'Y

	

'Y

	

'Y2

	

~2

	

1

	

1

	

l
+n (6+L2-a-~-2L L2+ 2L2+ 12L2+ 4L + 2(Q - IL))

+O (n loge n)
I

.

	

(2.32)

The first order poles at z = 2 + Xk, k E Z \ {0}, give a contribution of the form

n268 (logQ n) + 0(n), (2.33)

where 58(x) is a continuous periodic function of period 1 and mean zero . The Fourier
coefficients of 68(x) can be obtained explicitly from the residues at the above . men-
tioned poles. They can be used to show that the amplitude of 68(x) is very small
(because of the exponential decrease of the F-function along . vertical lines) . Since
from the practical .point of view 68 (x) has almost no influence on the variance, we
omit these calculations here .

Combining (2.32), (2.33) and Proposition 1 we get the asymptotic equivalent of
Var(Xn,) according to (2.11) . The reader should take notice of the fact that the term of
order n2 in E(Xn)2 contains the square 62 (logQ n) of the fluctuating term 6 1 (logQ n),
where 61(x) has mean zero . Therefore we have

2
Var(Xn,) = (Q -

1)2n2 L + 12 2L + 6L
- 2(a +)(3) +	1

	

L
[
6 12

	

2

	

(Q _ 1)L 2 0

+n264(logQ n) + 0(n 1 +6 ),

	

E > 0,

	

(2.34)

where [62] o is the mean of 62 (x), and 64(x) is a small periodic function of period 1
and mean zero .



where

The quantity a- +,3 =

7r 2
a + Q = li(L) = 6L

2

can be rewritten as

1

	

1

	

47x2

	

47r2

2L + 24 - L2 It (
L )' (2.35)

ekx
h(x) _ k

	

(ekx - 1)2

	

(2.36)

Equation (2.35) follows from the functional equation for the Dedekind r7-function
and is proved e.g . in [6] . The alternative representation for a +,3 given by (2.35) is
extremely useful for numerical purposes, since the term i2 h( 4L2 ) is very small for
"reasonable" values of q resp . Q = q -1 .

The term [6fl 0 can be computed explicitly from the Fourier expansion in Propo-
sition 1 . Since (compare e.g . [18])

JF(zy)I =

	

7

	

(2 .37)
Y

sinh iry

we find
1

	

2
L2 [bl ] o = al

with a, defined in the theorem . Therefore the proof of Theorem I is complete .

3. The total cost

As already mentioned in the Introduction, the total cost Cn is the sum of the horizontal
path length X,,, and the vertical path length Y,-, where Y,, is n times the height of
the skiplist. The variance of the latter parameter was already studied in [5] resp .
[17] and we have the asymptotic equivalents for E(Yn ) resp. Var(Yn ) as presented in
the Introduction . It is an easy consequence that E(C n ) = E(Xn) + E(Yn) fulfills the
asymptotic relation from Proposition 1 (ii) .

In order to compute Var(Cn ) = Var(Xn + Yn ) we use

Var(Cn ) = Var(Xn ) + Var(Yn ) + 2Cov(Xn , Yn ),

	

(3.1)

where the covariance Cov(X n , Yn) = E(X.Yn ) - E(Xn )E(Yn ) will be studied in the
sequel .

We start with the term E(XnYn ) . The generating function of n+ l E(Xn+ 1 Yn+l) is

E F=m(z) (mProb(G < m) + 1: kProb(G = k)) ,

	

(3 .2)
M>1

	

k>m

where G stands for the random variable producing the last elment of the skip list
(a,, . . .) . (Observe that the random variables in question were assumed to be i .i .d .)
From (4 .2) we get immediately the expression

m

F=m(z) m + q

	

=

	

(F(z) - (1 - qm) F<m'(z)) .

	

(3.3)
M> 1

	

1 -q) m>o

(2.38)



Now from (2.4) and (2.5)

E (Fz)(- (1 - qm ) F~m (z))
M>0

1

	

1 qm\
_ (Q - 1)z

(

	

( (1 - z)2

	

Q-M1 /
,

2
M>0

which can be rewritten as

m
+

M>0

+ 2~i
I

B(n + 2, -z)Q 1 1 xx-1 -
C(2, . . .,n+l)

1

	

q

	

z

	

qZ+j

	

I

	

iq i
_ (Q- 0Z ( 1 - z

	

QiBQjF 2+ (1 - z) 2

	

MIA + (1 - z)2

	

Qil

	

(3 .4)

1<i<j"

	

I<i<j

	

i>1

The evaluation of the coefficients may now be performed by the same technique as
in Sect. 2. Observe that we use Lemma 3 (2 .19) for the third sum . We find

E X Y

	

= (Q - 1)n

	

1

	

B(n + 1 z)	
1

	

x( n n)

	

2~i

	

'

	

Qz-1 - 1
C(2, . . .,n)

x (3_z_a+ E Qm+z- 1 +QZ ?-1 /dz
/

x

	

-

	

~` m

	

m+z- 1
(_(Z1)_Qm_l+Qm+z_I_l)dZ} •(3 •5 )2

	

m>I
!~

	

m
0
>0

The computation of the residues at z = 1 (third order pole) resp . z = 1 +Xk, k E 7L\ {0}
(simple poles) gives the main asymptotic terms, from which we obtain

2
Cov(Xn , Yn) = (Q - 1)n2

	

kL2 + 12 L + 6L2 + L

	

(Qk

	

)2
- 2(a +,0)

1k 1

+ L2 [6 1 62] 0 + 6 6(logQ n) + O(n l+
E),

	

(3 .6)

with 86(x) of mean zero. Now

[6162 0 = E r(Xk)I'( - 1 - Xk)
kq0= E(-1 + Xk)F(-1 + Xk)F(-1 - Xk)

XkIF( - 1 - Xk)I2
k>O

(3 .7)

so that iZ [6 1 62 ] 0 is the negative value from (2.38) . Inserting the last result in (3 .6)
we find Theorem 2 (i) . The variance Var(Cn) of the total cost is now computed by
(3 .1), and this completes the proof of Theorem 2 (ii) .



4. Alternative representations for the constants

For values of q that are very close to 0, i .e. Q very large, the representations of
the constants in the theorems are not well-suited for numerical evaluation . Therefore
we present the following alternative expressions . Concerning a +,0 we stay with the
original representation

a+p=

With regard to [b1] o the following transformation can be performed .
From the Fourier expansion of bi (x) in Proposition 1 we have

Let us consider the function

g(z) = L T(-1 + z)T(-1 - z)

	

(4.2)eLz - 1

Then [62] 0 is the sum of residues of g(z) at the poles z = Xk, k E Z\{0} . Furthermore

L2

	

7r2
Rest-og(z) = - 12 -

6
- 1 .

Combining these observations we can easily conclude that (0 < e < 1)

1
27ri

[b; ] o =

	

T(- l + Xk)T(-1 - Xk),

	

Xk =
kqo

E+200

	

- E+200

f g(z)dz -
27ri f g(z)dz = [bi] o - 12 - 6 - I

E-ioo

	

-E-ioo

since the T-function decreases exponentially towards ±ioo. Because of

1

	

1
e-Lz-I =-1- eLz-1

we have

- e+i00

	

E+iOO

	

E+200

2~ i f g(z)dz = 2~i f g(z)dz +
2i

f T(-1 + z)I'(- I - z)dz. (4 .4)

-E-ioo

	

E-200

	

E-ico

Altogether

Lb 1JO

E+ioo
2

=
12+

62

+I+
21ri

L
27ri

E+200

I
E-ioo

E-ioo

g(z)dz

T(-1 + z)T(-1 - z)dz .

2k7ri
L

(4 .1)

(4 .3)

(4.5)



It is easily verified that both remaining integrals coincide with the negative sum of
the corresponding residues at the poles with real part greater than 0. Collecting the
residues at z = I (double pole) and z = k E N, k > 2 (simple poles) we finally obtain

L2 .2

	

QL2

	

3 QL[62]'0 - 12 + 6 +1- (Q
-1)2 2Q-1

+ 2L - 2L log :2 - 2LE	(- I)k k - 	(4.6)
(k + 1)k(k - 1)(Q

	

1)

Inserting (4.6) in expression (2 .34) gives for the variance of the horizontal path length
the following alternative formula .

Corollary 1 .

k
Var(Xn ) _ (Q - 1)2n22

L
2 log 2 - 1 +

5
Q11 + 2

1:
(k + 1)k(k _-1 1)(Qk - 1) )k>2

k

	

l

+(Q	
Q 1)' - 2 k (Q

	 Q	1)2 + 64(logQ n) } + O(n'+E)

	

e > 0.
k>I

In a similar manner we obtain

Corollary 2.

_ k I

G)

	

Var(Y,,,) _ n2 log 2 2

	

k( Q1)-1 + 65 (logQ n) + O(n' +E),

k>

	

.)

(ii) Cov(Xn , Yn ) = (Q - 1)n2
{ L (2log2-

2 + 2 1 +

	

1 1Q 1 k> I Q k -

+ 2E	(-I)k
k>2 (k,+ 1)k(k - 1)(Qk - 1))

k>2

Q
(Q - 1)2

(k + I )Qk, + b6(logQ n)) + O(n") .
(Qk - 1 )-

Again, Var(CC) is easily computed from the terms above using (3.1) .

5. Variations

Here we first discuss the analogous notion of the path length where only strictly greater
elements count as right-to-left maxima . This is quite natural from a combinatorial point
of view. However, since there is no relevance with respect to a computer science
problem, we confine ourselves to a sketch and, to ease the presentation, use the
analogous notations without explicitly stating them .

We write p' in a unique way as

p'=amrr,

	

where or E {1, . . .,m}*, -r E {1, . . .,m-



then

Hence

and

F<-(z) - F<m (z) -

	

I

	

+ z(1 - q m-') + F<' (z) + F<m (z)

pqm- I z

	

Qm1Qm - 11 Qm1Qm - 11 2 EM-11

	

Qm1

or
F<m (z)Qm12 = F<m(z)Qm - 112 + pg	'"' - I z

am - 11'

Again we solve it by iteration and let m tend to infinity ;

b(p) = b(Qmrr) = b(o) + b(rr) + I-rj + I ,

	

b(e) = 0 .

P=m(z, y) = pqm-' zyP< m (z, y)P<m (zy, y), P-0(z, y) = 1 ,

F(z) = p

1mJfl :=

z

(1 - ) i>o Q21

So the expection E(X7z) is closely related to the old one ; since there is the extra
summand for i = 0, it is p(n - 1) plus q times the expectation from before . (The
reader should remember that E(Xn ) stands for the right-to-left maxima in a sequence
of length n - 1 .)

Next, we discuss the case where "maximum" is replaced by "minimum" . Let's
start with the first variant (equality counts) .

P-m (z, y) = pqm-' zy P>m(
z, y)P>m(zy, y), P°(z, y) = 1 .

This time F(z) = F~' (z) is the generating function of interest . With

we get

1
1 - zqm

F >-m(z)gm - 1 D 2 = F>- (z)UImB 2 +
pqm- I z =

	

pq,j-' z '
Ul L!

	

am-111 j )mffj -1~

and therefore
z

	

qJ
.V (Z) = p

(1 - ) ;>o 91i ID

To get the coefficient of z" -I is now very simple . Apart from exponentially small
terms, the expectation is

En ti p ( 2 ) + pna - pa4,

with the constants

a =

	

Q
1- 1

	

and

	

a4 =

	

= a + ,Q .

The other variant (equality does not count) leads to
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