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Analysis of a new skip list variant:
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For a skip list variant, introduced by Cho and Sahni, we a®alyhat is the analogue of horizontal plus vertical search
cost in the original skip list model. While the average in Regriginal version behaves Iik@ log, n, with @ = % a
parameter, it is here given i) + 1) logg n.
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1 Introduction

Skip lists were introduced by Pugh (10) and analysed in (3) 4nd also some other papers.

We assume that the reader has a certain familiarity skt lists,if (s)he wants to understand the origin of
the problem. To understand the analysis that we performyalo grerequisites are necessary.

The variation that was suggested in (1) is best understamdrig at the following example, taken from (1):

Thedata§,6,7,9,12,17,19, 21, 25, 26) have a certain level associated to them, which follows gangetric
law P{level is = k} = pg"*~!. And they are linked as indicated, which one can easily wtded from the
diagram.

TThis material is based upon work supported by the NationakReh Foundation under grant number 2053748
subm. to DMTCS(© by the authors Discrete Mathematics and Theoretical Coenf@dience (DMTCS), Nancy, France
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We want to study the length of a path to reach a certain elerkeninstance, to reac®b, we follow the path
9-17-19-25, and we record 4 steps. A step from the header to the data,lbasasteps downwards between
header elements are not counted.

The values of the data are completely immaterial; only thelfeare of relevance. So, in our example the
sequence i$213121412. We start from the highest level that still allows us to rett@hdesired element, (here
3), and stay there as long as possible. Otherwise, we go doweval.

The process is easier understood, if we think about the segueversed (here2141213121).

The path of interest starts then at the element to be fourre ¢he second element of sequence), which has
level 1, and we scan the sequence, counting elements onrtieeleeel, until we find an element with the next
level (one level higher), etc. We thus “visit” the elementarked in boldface2141213121, and we have 4
marked elements, which checks with the length of our seaati p

Since elements to the left of where we start are irrelevaatagsume that we start with the first element. We
will study the parameteK (a1 a2 . . . a,, ), which we might call the number ofeak consecutive maximas we
count repetitions of the (current) maximum, and only allbe maximum to change to the next valué{=the
previous value).

For our probabilistic analysis, we assume that the lavgdse independently generated by the geometric law
with parametey (withp =1 — ¢).

We have two parameters, the levehat has been already reached, and the coufit¢hat counts how often
the current maximuni has been either repeated or replaced by1.

There is a small technical sublety: Sometimes it is usefabgume that we start at leveland withK =1,
beforewe start to read the word. We will call this versiéi"’ (n). For the skip list analysis, we assume that
the first symbol read defines the starting value; this vensitirbe calledX(n). Of course, they are intimately
linked, and in a slight abuse of notation, we can say that

K(n) = z:qu*lK“> (n—1).
r>1
For the sake of clarity, we give the list of values for the wosd 12435351

We use (standard) notation frapanalysis:(z),, = [[/—y (1 — #¢") and(z)se = [[,5,(1 — 2¢*). Note that
(2)n = (7)o /(2¢™) 0, and the latter form makes sense alsorf@ complex number.
Furthermore, we us@ = 1/¢q, andL = In Q.
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2 Generating functions

We consider the random variabla8™ (n) andI{") (n). Let
w(n; ki) = P{K ) (n) = k, I (n) = i}.

(We don’t write the parameterinto this notation, in order not to overload it.)
As a warm-up, we start at level= 1. We have the backwards equation

m(n;k,i) =m(n— 13k — 1,5 — D)pg" " +mw(n — Lk — 1,i)pg" " + w(n — 1;k,4)(1 — pg'~ " — pq’)

andm(0;1,1) = 1.
We want to translate this into a trivariate generating fiorct

F(z,u,v) = Z m(n;k, i)z ubv’,
n,k,i>0

Multiplying the backwards equation by*u*v* we eventually get after a few routine simplifications (note
that F(0, u, v) = ww):

F(z,u,v) = T {uv +pz(uv+ %(u —q— 1))F(z,u,qv)}

Iterating, this gives
(p2)’ jrl 1, u—g—1
F(z,u,v)zzmuvq H(uvq +7)
§>0 1=0 q

Settingu = 1 means ignoring thé&-parameter and only counting the level. The correspondémgating
functions can be found in our recent paper (8).
However, we rather ignore theparameter here, which means that weiset 1, to get

. j—1
pz)’ ; u—q—1
G(z,u) = F(z,u,1) = Z #qu H (uql + 7)
3>0 1=0 q

The modifications for the starting levelare only minor:#(0, u,v) = uv”, otherwise the same functional
equation. Iteration produces the explicit form

j ot —q—1
F(z,u,v) = Fr (2,u,v) = Z %u(vqﬂ) H (uvql + %)
>0 =0

The generating function that is relevant to the skip list, is

F(z,u,v) =z qurlem (z,u,v)

r>1
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and since thd-parameter is not relevant,

_ _u b2y @ o u—g-1
S(z,u) = F(z,u,1) = quz:l A-271-g E}(uq +7q )

Note that
[n+1]9( )_Ezn:( )j+1 n 1 j_l( I+U—q—1)
z z,u) = . pq )T uq — )
j=0 =0

There is another way to get this generating function, whsalhorecombinatorial. There is a unique decom-
position of words:

* + * + * +
(r(N \{r,(r+1)}) ) ((r F N\ {(r +1), (r +2)}) ) . (S(N\ {s,5+1}) )
This expresses the fact that the level startsatd ends at, which must be summed over all possible choices.
If one translates this symbolic form accordingly, one gets
1—1

- . zupq
N Z Hl—z—l—zpqi*l(l—i—q—u)'

1<r<si=r

We will give a direct proof in the sequel that the two forms5¢, u) coincide, which is surprisingly difficult.
In order to avoid confusion, we temporarily call the secomarfG(z, v); we will drop the bar once equality
has been established.

We substitutee = w/(w — 1). Thus

s i—1

g - wupq
G(z,u) = —1)sti-r : .
(=) 1;<s( ) 1;[ 1 —wpg'~(1+q—u)

Then, by general principles,

S i—1

[Zn+1]§(z7’u,) = (_1)n,+1[wn+1](1 —w)" Z (_1)S+1_7, H quq

s l—wpg =t (1+q—wu)

1<r<s
r+h—1 wupqi_l
_ n+1 n+1 k] (_1)h :
Z( ) 1;h 1;[ 1—wpg='(1+q—u)
n i4+r—2
_ k+1 h wupq
z( Y ) S 0 T

=0 1<r,h

k+1

_ — (n k—1_ 4 k+1 h wupq'~
= (k) (=1) 1= go [w Z H 1_

1—2 _
k=0 h>1 wrq 1 T4 u)
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We still have to prove that

-2

k—1 h
u ( p, u—g—1 k—1 k+1 h wuq
= uq +7): -1 w

q

h21 i=1
h wug =2
= [w"*] Z H i—2 ;
S Lt wd (L4 g - )
or, in equivalent form:
b h wuqi
oI (v +uma=1) = I T .
=1 h>0i=0 1+wg'(1+q—u)
Now set, withv = 1 + ¢ — u,
=2 H i
h>01=0 1+ wq U
then w wu
H(w) = H ,
(w) 14+ wv + 14+ wv (wq)
or

(1+ wv)H(w) = wu + wuH (wq).
With ay, = [w*+1]H (w), we find”
ar + vag—1 = ufk = 0] + ug®ap_1,

or
ar, = ulk = 0] + (uqk —v)ak_1,

from which we find by iteration

as desired.

3 Moments

We start from

50 = 2 S 00 (1) s

() We use Iverson’s notatio:P] = 1 if P is true, zero otherwise.
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Differentiate this, then set = 1 to get the average:

n

1@+ )00 (1) e H

j=1

—1p@+ 1) > 00 (1) #(—UH@H

j=1

=1+p@+1) Z(pq)j <§L> (1- qj“l)(l —¢’) SN

(@ )271”/ : nl(-=1)" (pq)? (@oo

2z=1)...(z—=n) 1 —¢#tH (1 — ¢*) (¢* V) o

This integral representation comes frétice’s method:We cite the survey paper (3) for that. The contour
includes the poles, 2, . .., n and no others. Changing the contour, one is lead to competeutside poles as
a compensation. Here, we have to consider the poles-at) and atz = x, = 2mik/L. The machinery is
explained in more detail in the earlier skip list papers (7; 4

Thus we compute

Lyl w0 (@
B e R e [ (o AT
Q+1 Q+1 (1+q)?

We use the (standard) abbreviation

— 1 -
i>1
So the averagéX(n + 1) is asymptotic to

(Q +1)loggn + (sz + Qzl () — (Q + 1)a —

1+q)?
(2 ) + d(logg n) + 1.

To compute the second (factorial) moment, we have to difiéaiee

U — 1 u—q—1
Z J+1 z 4 -
quq <>1—qJ“ (uq+ q )

twice with respect ta;, and then set, = 1. This leads to

2B+ 1) = 1)+ 20(Q + DY () (0 P s @ TG

with 4
j—1 ql 41 1 q

T(j>=2ql_‘1’ —QU -1 - (@+1) Zl_
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Now it is easy to replace the discrete paramgtey a complex variable:

l+z z
T(z):—Q(z—1)—(@—1—1)(04—2:1EJr q >

4z gz
= R
Aroundz ~ 0,
Q+1 »p LQ+1)
T(e)~ =~ 50 2 (LAQ+ )+ @~ =),
with

Thus the residue computationat 0 leads to

nl(=1)" (pq)? (@)oo
(z=1)...2=n) 1 = ¢ (1 - ¢*) (¢* )

20(Q + 1) T(2).

Notice the following expansion:

2

(@)oo ~1 —,zL()c—i—;:2L7(0z2 +0).

(")

Now Maple computes the variance (fluctuations must be adaeding from the poles at;). To summarize:

Theorem 1 Expectation and variance of tt#é(n)-parameter are asymptotic to

EX(n) ~ (Q + 1)loggn + (Q—zl)’y + QZ ! In(p) — (Q +1)a — % +d(loggn) +1,
07 oy T2 In(p) 9
VK(n) ~ QQ+ loggn +QQ+ DT +(Q+ 15 +QQ+ N Q@+ e — (@ +1)3
20(Q +1 Q+1)2(5Q*-16Q —1
- (L - )12((62—1)2 ' dwllogg )

The constants and 3 are given by

q' q'
. and =) —— .
1— qz ﬂ Z (]_ _ ql)Q

i>1

o=
i>1
d(x) anddyar(x) are small periodic functions. Their Fourier coefficientsitwbbe given in principle.

Note that we actually did the computations §6fn + 1) instead ofK(n), but that does not make a difference
for the main terms displayed here.

4 The cumulative X-parameter

So far, in terms of the proposed new skip list, we computeddherage) cost to get to the last element. (Recall
that for the analysis we think about the reversed sequengs we start with the first element.) But one also
wants to know the cost to get to any of the other elements. 8@ompute here tha&verage cumulative cost

EX(1) + - - + EX(n).
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This is easy on the level of generating functions; it just nse@ multiplication byl /(1 — 2):

1 _ux (pg2)t! —q—1
1—29(Z’u)_q§(1—21+21—q3+1n( q )
Now we differentiate this with respect tg and set: = 1:
z s (pz)itt ¢ -
T T QUL G (DT @i

j=1
This time it is more convenient to read off the coefficientBf

> . J .
@D P ) T @i
j=1

n—1 ;
q] -
+(Q+1) ZPJH(] n 1)@(—1)J Hq)j—1
j=1

=n+@+l) Z ( )(1—q1)?i—qj‘1)(_1)j(q)j1'

Jj=

Thus, using Rice’s integral once again, which this time asesntour that enclosed the poles. ., n we must
look at

_ 5 1)1 n!(=1)" P 7
Qe e e e e O
o 51 nl(=1)" z+1 gt
— 04 nQ(Q + e P DU (o).

Gr1)ez-1...z—n+ 1)’ T—¢F(1—q)
This is eventually evaluated with the help of Maple.
Theorem 2 The expected value of the cumulatiién)-parameter is given by

In(p) Q+1 @ +3
L L 2(Q — 1)

n|(Q+ 1)t

(Q+1) —(Q+1a— + Scum(log m) |.

Of course, one could repladé,_; by lnn + ~.

5 Additional analysis

As we explained in the introduction, in our parameter, stigpgnwards in the header structure as well as the
single step from to the header to the actual data are notdadluThe latter one is just one step, so it does not
require analysis. The first one, however, is the differerete/ben thenaximumof the word and théevel I
finally reached.

Now it is a folklore result that the maximum (sometimes aalieight) is~ log, n (see (11; 6)). The level
that is reached at the end is a parameter typically enccethieapproximate countingsee (2; 8; 5), and is also
~ logg n. Consequently, the difference of maximum and final levef iswer order of growth. An asymptotic
expansion will appear in the final paper.
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6 The X-parameter for permutations

In this short section, we consider, instead of words, peatraris (which can also be interpreted as special
words). The definition of thé&(n)-parameter is the same.
Consider the probability (n, [) that theX (n)-parameter is> [. Then the permutation must look like

(Mw(r+ Dwa(r+2)...(r+1—1)w.

Note thatw; ... w; is any permutation of. — [ letters; there arén — [)! of them. The number of ways to split
them intol groups is(’;;}). The number of choices for the firstlettee=1,...,n+1—1lis (n+1—1). Thus

1 1 1
(-1 n-=2)

w(n,1) = %(n—z)!(Z:D(nH_z) _

Therefore we find the expectation:

n

EX(n) ~ Zﬂ(n,l) ~ (1 - %)e.

=1
A similar computation gives the variance (again apart fraqpomentially small terms):

e(2e —3) €2
7 Conclusion

The X-parameter analysed in this paper is the analogue of the ioeahthorizontal and vertical cost in the
original skip list. This parameter @ averageasymptotic to~ @ log, n, as shown for instance in (9; 7). Our
present analysis gives a leading tef@ + 1) logg, n, so the logarithmic behaviour is preserved (as predicted
in (1)), but with a larger constant.

In the section on the cumulati¥é-parameter we discussed trneerageof the total search cost, the parameter
path lengthwhich, for a given word; . . . a,, is defined to be

Plag...an) :=K(ar...an) +K(ag...an) + -+ K(an).
For the average this does not make a difference, but highenents and distributiomre different. This

parameter is, apparently, much harder to analyse. We hapgdot on it in a subsequent publication.
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