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The Average Height of the Second Highest Leaf
of a Planted Plane Tree

HeLmuTt PRODINGER

The 2-height of a planted plane tree is the distance between the root and the second highest
leaf (which can be the same as the height). In this note the following theorem is proved:

The average 2-height of a planted plane tree with n nodes, considering all such trees to be
equally likely, is

n 1/2_Z+0 n—1/2+£)’ for £ >0 and n > co.
6

1. INTRODUCTION

Three pioneering papers [8], [2] and [4] exist on the subject of the height of trees. In
[8] Rényi and Szekeres have studied labelled trees; in [4] Flajolet and Odlyzko have
studied binary trees using a function theoretic approach, and in [2] de Bruijn, Knuth and
Rice have studied planted plane trees using the so-called Gamma-function-method :

The family B of planted plane trees can be described by the formal equation

B=o+ o +
I A\ 1)
BB BRBRB
yielding the equation
z
B(z)=——— 2
(Z). 1-B(z) @

for the generating function B(z) =}, _, t(n)z" of the numbers ¢(n) of planted plane trees.

This gives

1—(1-4z)"?
2

B(z)= and t(n)=-,1-1-(2n—2>, n=l1. (3)

n—1

If the height of a tree denotes the number of nodes on a maximal simple path starting
at the root, the essential result of [2] reads:

The average height of a planted plane tree with n nodes, considering all such trees to be
equally likely, is

(7mn)'?=3+0(n""***) for e>0and n- . (4)

The present paper gives a related result to (4). The height measures the distance between
the root and the highest leaf. We consider as notion of height (called 2-height) the distance
between the root and the second highest leaf (the second highest leaf may be as high as
the highest leaf) and prove:

The average 2-height of a planted plane tree with n nodes, considering all such trees to
be equally likely, is

(7n)"?=I+0(n""***) fore>0and n- co. (5)

We remark that is convenient to define the 2-height of a tree to be zero if it has just
one leaf.
For the coefficient of z" in f we write [z"]f.
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2. THE AVERAGE 2-HEIGHT

Let B,(z) be the generating function of trees with n nodes and 2-height <h, A,(z) the
generating function of trees with n nodes and height <h and C,(z) = B,(z) — Ax(2).

LEMMA 1. With z=u/(1+u)?,

_(l—u)3 u”
Ch(z)= 1—u® (1+uh)2'

(6)

Proor. Regarding a tree counted by C,(z) we obtain a recursion by considefing the
subtree counted by C,_,(z):

C,=z Z A;z—l “Chort 2 A{x—l

i=0 j=0
! C
=z————— "+ Ch_,.
(1=A,_ )2 @
Since Cy=2z/(1—2z) and by [2] A, =z/(1—A,_,) an iteration of (7) yields
: h
C.=z2" " [T A7 (8)
l—Z i=1
From [2] we know that
1+u)'™ ;
A(z)=z- 2 i p U Ty 9)
Ph+1(2) 1=
Hence
h 2 h+1 2
Co=zh . L2l 2L (10)
-z i=t Piv1 1=2 Phsy
Since
I (1+u)®  (1-u)(1+u)? (1)
l—z l1+u+u® 1-u’ ’

the result follows by an elementary computation.

For the average 2-height we have to compute

'(n) - T [2"NB(2) = Au(2) = C(2). (12)
Since
7(n) - 3 [2"I(B(2) ~ An(2)) (13)

is the average height, we have to consider

T [2"]C(2). (14)

h=0
For a given sequence of numbers a, we write

Nar=a,-3ar_+3a_,—ax_; and A'a,=a,—4a,_,+6a;_, —4a,_;t -+
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LEMMA 2. ‘
2n—1
3 n C _ — A 4 ( ) 15
E [z"]1Ch-i(2) Aél A séo n—h\ —3s (15)
. where the difference operator works on n— hA —3s.
i
]
' PROOF.
. 1 (€ dz
[z ]Ch—1(2)=rj —51 Ch-1(2)
i z
=LJ(°+) du_ |yt (1-w)*  u"
27ri u™t! 1—u® (1—-u")?
i S (1=u)? u"
i — n 1+ 2n-1 . . 16
| [u ]( ll) l___u3 (l_uh)2 ( )
_; The result follows by expanding the denominator.
’g Thus we have to consider
| 2n—1
= AN ( ) 17
¢ ;.,;Z;l séo n—hx—3s (7
LEmMA 3. If k=0(n*"?"*),
4(2n - 1)
n—k 2 e 12k* 4k* ,
— =k /"[3- +—7+0(n“/~“)]. (18)

' Outside the range k=0(n*"*"%), the left hand side of (18) is exponentially small.

Prookr. First, an elementary computation gives

. 2n—1) 1( k) 4< 2n) 2 3( 2n )
= +— —— .
A‘(n—'k 2 1 n A n—k nA n—k-—1 (19)

Now we use the following formula [5] (a fixed)

iy~ D

e
n—k—a =e_k2/n[l+a2+a4 a2+<—2a+2a3+0)k

() R

2n? n n n

k3

2n? 6n’ 3n?
<l6a4+60a2+9 i

+ -
24n 6n

20a+9 1
6‘(1)n5 k6+-77';gk8+0(n‘5/2+‘)]. (20)

<4a2+ 1 12a*+21a’+ 1)18 4a*+5a

. a
3)k4+—3-Fk5
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This gives after laborious computations

-1 2 4
(2n> A4< 2n >=L2 _kz,n[12_48nk 16k K o _,/M)] an

n n—k n

(5, e ()1
n n n—k n n n—k

| _
—e kzno(n l/2+e).
n

and

contribute only

An easy consequence of Lemma 3 is

LEMMA 4. Let k=0(n""?**).
2n\ " 2n—-1 \_2 2 12(k+3s)®> 4(k+3s)*

n n—k-3s n n

x(1+O(n"/2+€)). (22)

Let erfc(z) =27 ~"/2[* ¢~ dt be the complement of the error function. Using the ideas
of Feller [3] (compare [7]), one can prove

LEMMA 5. Let k=0(n""?**).

s=0

Y (k+3s)b e k¥3s)/n = I (k+3s)b e k+39%n 4
0

X(1+0(n~"2*)). (23)
LEMMA 6.
2 cro 2 > 1 VA 2
(a) 7z t’e”’ dt=£erfc(z)+;l/—2e‘z (24)
2 [ 3 +z 3 2 )
(b) vz e " dt—zerfc(z)+ 2 e . (25)
Proor. The functions
2 t—z)"
erfen(z) =—s f (t=2)" _a (26)
T n!

z

fulfill erfcy(z) =erfc(z), erfc_,(z) =272 e~?" and the recursion

. 1
erfc,,(z)=———z—erfc,,_l(z)+5— erfc,_,(z). (27
n n

(Compare[1;p.299].) From this the result follows after a long but elementary computation-
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LEMMA 7..
on\"' L[ 2n-1 2 [ 2 k3] yaee
=— " —-k+=--—|(1+ . 28
(") ze (,7% ) -5 2 Elavomey. @)
ProoF. Since for k=0(n""?"")
b b
z (k+3bs)2 e—(k+3s)7"/n= j (k+?:,s)2 e—(k+3s)2/n ds(1+0(n—1/2+e))
s=0 n n
0
n'/2 . ,
= 120 e™/" dt(1+0(n~"7")) (29)
k/n'/?

the result follows by applying Lemma 6 to Lemma 4.

LEMMA 8.
§=(—3 (n)+— (n))<1+0(n-”2+8)> (30)
nzgl 3n3g3
where
g (n)= Y kPo(k)e ™ ", b=0 and o(k)=Yj. (31)
k=1 jlk

ProoF. This is a simple rearrangement of (17) using the approximation (28).

LEMMA 9. Let beN,.

(———b+2)n(b+2)/z_lr(——b+1>n“’+”/2+0(1), n -> 0o, (32)

2
T

=—T

g(n) 5 4 )

12

ProOE. We use the Gamma-function method: Since

e_"‘=; J I'(z)x *dz, x>0, ¢>0 (33)
2 )
and
kZl o(k)k™*={(z){(z—1), (34)
we have
b 1 ¢+100 k2 -
g(n)= Y k'o(k)-— r(z\—) dz
k=1 27l ) n
=L, J’ Ir'(z)n*f(2z-b){(2z-b-1)dz. (35)
2mi

c—i00



By a well known method we can shift the line of integration to the left as far as we
please if we only take the residues into account. From the simple pole of the {-functiop

we have

r (2_;52)”(,,+2)/ 20(2)3 (36)
and
r (%)n“’“’/ *3£(0). (37)

Now {(2) = 7?/6 and £(0) = —1/2 [9], yielding the leading terms of the expansion. The
simple poles of the I'-function contribute O(1).

Plugging this asymptotic expansion of g,(n) into equaton (30), we find

Lemma 10.
§=6Ln(1+0(n_’/2”)), n - oo, (38)
THEOREM 11.
1. =t"'(n) h};g [z"1Cu(z) =3+0(n~"?>"), n - o, (39)

PrOOF. Since
ey G ()
n\n-—1 4n\n n
we have to multiply & by 4n(1+0(1/n)) to obtain the result.
Altogether we have proved:
THEOREM 12. The average 2-height of a planted plane tree with n nodes is
(mn)"2=14+0(n""?*®) for e>0and n- co. (40)

Table 1 shows some values of 7, of Theorem 11.

TABLE 1

n Tn n T,

1 1-0000 9 0-7664
2 2-0000 10 0-7532
3 1-5000 11 0-7430
4 1-:2000 12 0-7348
5 1-0000 13 ) 0-7282
6 0-8810 14 0-7228
7 0-8182 15 0-7184
8 0-7855 16 0-7146
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