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This paper deals with the average case performance of a prominent data structure, namely digital
search trees which are useful in many applications in Computer Science and Telecommunication,
such as partial match retrieval of multidimensional data, conflict resolution algorithms for broadcast
communication, radix exchange sort, polynomial factorization, simulation, lexicographical sorting
and extendible hashing.

The most important parameter related to the cost of successful search is the so called internal
path length. Knuth, Flajolet and others gave asymptotic results on the expectation of this quantity,
whereas the analysis of the variance was open up to now. In this paper we solve this problem.
The solution relies on deep analytic tools which we sketch in the final section. It turns out that
while (apart from some ubiquitous small periodic fluctuations) the expectation is of order NiogN,

the variance is only of order N. (N refers to the size of the data structure.)
This analysis completes previous results on Tries and Patricia Trics.

1INTRODUCTION

Analysis of algorithms is a rapidly developing area
in Theoretical Computer Science with a strong impact
to practical problems. The IFIP congress has a long
tradition in presenting results in that area which has
been started with the famous paper "Mathematical
Analysis of Algorithms” by Donald Knuth in 1971 [11].
The cost of the performance of algorithms, including
topics as the storage requirements of data structures
and the execution time of certain subroutines, is
usually described in terms of worst case behaviour
and average case behaviour. Sophisticated methods
have been applied in order to optimize the worst
case behaviour of algorithms; nevertheless for prac-
tical purposes the question of the average case per-
formance of data structures and algorithms is con-
sidered more and more to be of great importance.
Digital trec search was first proposed by Coffman
and Eve in 1970 131: the digital search tree is a data
Structure  which leads to asymptotically optimal
average case performance by using the digital pro-
Perties of keys. We assume that the keys are repre-
Sented as sequences of bits. The keys are inserted
into the nodes of a binary tree exactly as with binary
search trees. However, the left/right decision is
8overned by the bits of the keys. For example

010... \
110... 07 U

7 .
ATt @ (B
001... ()O/ 1
000... E C

Note that the order in which the keys are inserted

mYaow >

is relevant.

We mention for later comparisions that so called
tries and Patricia tries follow basically the same idea
but storing keys in leaves despite of internal nodes,
compare [12].

Digital search trees and tries find many applications -
in Computer Science and Telecommunication such as
partial match retrieval for multidimensional data,
conflict resolution algorithms for broadcast commu-
nication [141, radix exchange sort, polynomial fac-
torization, simulation 61, [121, lexicographical sorting
11, 1161 and extendible hashing [41].

The average number of nodes examined during a
successful search in a search tree with N nodes is
1 + the internal path length, divided by N:

The internal path length is the sum of the lengths
of the paths from the root to each node in the tree
(in our example it is 6).

lLet IN be the expected internal path length of a
digital tree built rom N (sufficiently long keys)
comprised of random bits. Then the following asymp-
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totic result holds:
Iy ~ N logp N
+ N-(-1716... + 3;(logz N)), (1)

where 5x) is a periodic function of very small
amplitude (<107®) . So for practical purposes 3y may
be neglected as far as the expectation is concerned.
Nevertheless it turns out that a careful analysis of
8, (as well as the smaller order terms of ly) is of
crucial importance for the analysis of the variance.
() has been established by Konheim-Newman 1133,
Knuth [121, Flajolet-Sedgewick [51, using different
technical tools. However, the analysis of the variance
has turned out to be an even more challenging
problem and was open up to now; this paper gives
an outline to the final answer to this question in-
cluding remarks on the difficult technical apparatus
that is needed for the achievement of this result.
(The analysis of the (external) path length in tries
resp. Patricia tries is remarkably easier but by no
means trivial, compare [91 and [101. The same para-
meters in an easier statistical model, namely con-
sidering abstract averaging trees, were studied in
71 and 1171)

We conclude this section with a table of expectations
and variances of the internal resp. external path
lengths (ignoring the ubiquitous small periodic fluc-

tuations):

Expectation Variance
Digital search trees N (log, N - 171 N- 0.25
Tries N (logy N + 1.33) N~ 4.35

Patricia tries N (log, N + 0.33) N- 0.37
It can be seen from this table that the variance is
rather small (of order N {1}); again digital search
trees prove to be the best incarnation of the idea of
digital searching.

2. OUTLINE OF THE METHODS AND MAIN RESULTS

Let Ty be the family of digital search trees built
from N records with keys from random bit streams.
A key consists of 0's and 1's with equal probability
of appearance. Let Xy denote the random variable
“internal path length" of trees in Ty and Fyy(z) the
corresponding probability generating function, i.e.
the coefficient [zX) Fnfz) of ¥ in Fn(z) is the pro-
bability that a tree in Ty has internal path length
cqual to k. Then the following recursion holds which
is immediate from the definitions:

N
Fret(2) = sz;)z'N(flj) Fie(2) Fpy. (@)
h {Nz0), Fylz)=1. (2
0]

Then the expectation ly is given by Iy = F() and
fulfills

N
lN"‘l = N + 21_N k;) (I:) lk

(N>0), 10 =0 (3)

This recursion may be solved explicitely by the use
of exponential generating functions:

N

With L) ::Néo IN -;—' {3)  translates into the

following functional differential equation

L' = ze® + 2e7/2L(3) )
By the substitution T(2) = ¢®L(-z) we have the casier
equation

te) -T@=-z+21%. (5)
s T ~ N .

with Tiz) = & IN{5 we find

fN = Qng (N22), g = 1’{ =0 (6)
with the finite product

Qu = a - La-pHa- ;1,\7) )]

so that finally
N
In =kZZ(I§) Dk Q. 8)

The reader should note that an asymptotic evaluation
of (8) is non elementary by the fact that terms of
almost equal magnitude occur with alternating signs.
For this reason sophisticated methods from complex
analysis are needed to find the correct order of
growth. An essential step is the application of the
following lemma from the calculus of finite differ-
ences.

Lemma 1. (Compare [12;p.1381, [151). Let € be a path
surrounding the points jj+1,...,.N and f(z) be analytic
inside €. Then

kzl (ﬁ) (vkra = - ﬁ { [N;z] f(z) dz (&)
2] Je

. - Nt N
with the abbreviation [N;z] = m . n

In our applications f(z) is a meromorphic function
that continues a sequence f(k), e.g. j=2 and f(k) = Qy-2
in (8). Moving the contour of integration il wurns out
that the asymptotic expansion of the alternating sum
is obtained via
¥ Res ([:N;‘LJ I‘(z)) s

where the sum is taken over all poles different from
Jrl N




For technical details of the continuation of f(k) = Qk-2
we refer to the next section. Regarding the residues
at poles with real part > -1 we derive the following
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where 17)
k-2 1 k-2 . 2k
up = 2Qp o 4 + ol -4 ,
k k 2[ P 2114 =1 J-1 2k'2 _ 1J

accurate asymptotic expansion for lN'
Theorem 2. The expectation ly of the internal path
length of digital search trees built from N records

fulfills

y-1
~ N 1082N+N< 1

Tog2 "2 "« 3yl IogzN))

N
2y-1 S

+logzN + Hoga * 3 T @ * Sllog, N (10)

with vy = 0.57721-- (Euler's constant) and o =

Z 1720 - 1) = 1.60669. §;(x) and §,(x) are continuous

per10d1c functions of period 1, mean 0 and very

small amplitude; for later use we mention the
Fourier expansion of §(x) :

o1 o(oq - 2k okgix
00 = 32 > T(-1 fog7) €T 0 ap

We mention in passing that the O(l)-term in (10) is
slightly incorrect in [12].

Now we turn to the analysis of the variance which
is given by

Var XN = SN + IN - 11\? (12)

with sy = Fr\'j(l), From (2) we get the recurrence
relation {for N20; s4=0)

N
s = N2 ()1
k=0

+ N(N-1)
(13)

N
1-N 1-N Ny o
v 2 Z () hetneer 2N 20 (F) s
k=0
Inorder to find an explicit solution to this recurrence

it is split up into 3 parts: SN = uN + YN + N
where

UN = 2N(1N+]_

N
N) + 21_N Z (r;)uk
k=0

N20, up= 0 (14)

N
)+ NS (N -
W= NIND + 2 kZo (%) vie N0, vg=0 @)

N ZlNZ( ) 1 Ik

N
# 2N (W) e
k=0
Nz0 , WO =0 (16)

A similar treatment as with (3) leads to the following
explicit solutions
N

uy =30 (W) ok,

,LLO:U1:L12:O
k=3

k=3
where (18)
k=4 Qg
N N .
WN:Z(k)(_l) W . Wo T ..=w =0
k=8
where (19)
k-1 -2
o Z ol JZ (J) Qig Qj—i—z Q-2
= =2 1 Qj-1
It is not too difficult to prove that
o= a(h) g (20)

80 that the treatment of uy and wy remains to be
done.

In principle uy and wy may be analyzed by making
use of Lemma 1. However it turns out to be a highly
non trivial problem to find continuations of uk resp.
wk We refer to that problem in the next section.
After lengthy and difficult computations the residue
calculus leads us to the following results.

Lemma 3. With the abbreviation L= log2 we have
un v % NzlogN

P N2 (D 6 e ay00,N) )

N log? N 2N (2
T + TlogN ( + 8 + a)
+ N(cp + 8401og,N) ) (21
1
N Y T3 N2 logZ N (22)

+N210gN'<*§- 2 POS 20()

L 2 1.2 T
+N2'(%Qg+%+ «? + 3a + —2—13%—7—
2
20y B 2 2 R
LT *©v "2 %
2
AL 2, 5o(log,N)
g
ol2 12 % N )
3
+——2—Nlog2N
L
7 .3 _ 6x . 10y
+NlogN'<— ]2 L T L2)

+ N{cy + 86(logsN) )
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with some very involved constants ¢4, € and periodic
functions §3(x) ..., 3g(x) of mean zero and

k
(-1
61 = — . . (23)

=2
5h (keDke-n2K-1)

For completeness we mention the asymptotics for
N derived from (20):

v~ 2N2 -4 Niog N+ N(cg+87(1og,N))  (24)

According to (12) we thus find easily that the terms
of order NzlogZN and N2 logN cancel in Var Xy-.
However, the cancellation of the terms of order N2
is non trivial, since it contains the square 812 of the
periodic fluctuation originating from ly. From a deep
result in the theory of modular functions it can be
shown that the mean [8%]0 of 8% is given by (com-
pare [81):

o1 2kmi\| 2
Lemma 4. [5?]0 = —-]_'—2 kZOII“(- i- m)'
2 B
1 T 1 i 47
=L T T N
L2 61.2 L L 12
Thus we have
Var Xy ~ N2 sg(log;N), 25)

where 8g(x) has mean 0. From a continuity argument
{see Section 3) it follows that §g{x) = 0. Similarily
we can prove that the terms of order Nlog? N and
Nlog N cancel, so that

Var Xy ~ N(cq + 89 logoN) ).

Theorem 5. The variance of the internal path length
of digital search trees built from N records fulfills

Var Xy ~ N(0.25 + 8¢( logsN) ),

where Sg(x) is a continuous function of period 1,
mean 0 and very small amplitude.

3. SOME TECHNICAL REMARKS

In the sequel we stress some of the analytic problems
that we encounter during the investigation. We first
mention the problem of finding appropriate analytic
continuations for certain discrete sequences a needed
for the application of Lemma 1. The first instance is

k2
fk) = Qpg = ﬂ1 (- 2—.1)
1=

This can be handled by considering the infinite product

- S X
Q) = kUl (1 K ) (26)

so that -
Qk—2 = Q(X)/Q(Zz k)
with 1
o, =aqw= [](1- —zk—)= 0.288 .  (27)

k=1
Thus we may take
flz) = Q. /Q(2%7)
which is a meromorphic function with poles in

2kmi
log2

z=m+ m =1, 0, -1, -2,..,; ke

It turns out that the poles with non-zero imaginary
part constitute the periodic fluctuations in the asymp-
totic expansions - a phenomenon that occurs frequent-
ly in Computer Science [121.

The most challenging problem in this context occurs
with the continuation of \?/k: After some manipulations
starting trom (19) we may write v’\)k as

§ = Qg - [ 200 Q- 202 B0 - T+ TGO

with 0

Bk) = Z[—éf - —(‘)—‘J

i= ]

N

]
and
Th) =y ofk+d , T = T@),
j=0
where
2Q2 E(n)
oln) = @ 4 )
Q-2 272 Q.
and
n-3 e
£(n) =k22( e ) Q2 Onac

To continue B(k) is not too difficult; we may take

DN E RO R W e o
J?d ] [ee] ‘]\1 [es)

Q-2+

(where Q, = Q7 Q( 272) as before).

However, the continuation of £ is not at all obvious
because of the convolution involved. The tollowing
idea proves to be essential:

We consider the partial fraction decomposition

Qp S .
Q(x) =1 1 - Xz-i

, with a; = (-I)H/Z(Z)QH .

Using this for the Q's occuring in the convolution
and also some symmetry properties of the appearing
terms we are finally led to

Eeel) = > aa | _28-2-2n
2 M T e

R N N7 o, 1

¥ 1- 2'i'j"7,+4 [ ,\ k )( 21+k'2 1 * 2j+k‘2<1)

k>2

1 1
_L(21+z-3_] * 2j+z»3_1)

1 1
<21+z—2,1 NPT ) I}
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Next we mention that Lemma 4 follows from some

identities related to Dedekind's transformation
formula for the n-function (see [2])
e Qmit/12 H (1 . eZvrim) . 30 =0

nz1

Finally we turn our attention to the disappearing
fluctuation in (23): §g(x) is a continuous periodic
function of period 1 of mean 0, since its Fourier
series is absolutely convergent. If §g(x) would not
vanish identically we could find an ¢>0 and an
interval, say [a,b1¢10,11, such that 3g(x) < -¢ for
x¢la,bl. Since log, N is dense modulo 1, the variance
Var Xy would be negative for an infinity of values,
an obvious contradiction.
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