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REGISTER ALLOCATION FOR UNARY-BINARY TREES* 

P. FLAJOLETI' AND H. PRODINGER$ 

Abstract. We study the number of registers required for evaluating arithmetic expressions formed with 
any set of unary and binary operators. Our approach consists in a singularity analysis of intervening 
generating functions combined with a use of (complex) Mellin inversion. We illustrate it first by rederiving 
the known results about binary trees and then extend it to the fully general case of unaj-binary trees. The 
method used, as mentioned in the conclusion, is applicable to a wide class of combinatorial sums. 
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1. Introduction. An arithmetic expression with only binary operations may be 
described as a binary tree. For instance, (x + y t z) * t corresponds to 

The problem of register allocation consists in finding an evaluation strategy for 
arithmetic expressions using only binary operations applied to elements of an array 
called registers. For the above expression with registers being an array R[O], R[1], - - 
a possible evaluation strategy is 

R[O] + x 

R[2] + z 
R[11+ Y 

RUI + RC11 t R[21 
R[O] R[O] + R [  13 
R[1] + t 
R[O] + R[0] * R[ 11 

There is an optimal strategy with respect to the number of registers used. That 
strategy has been found by Ershov as early as 1958 [5] and is described by Sethi and 
Ullman in [23]. The minimal number of registers necessary to keep intermediate results 
is called the register function of the tree t, and is denoted by Reg ( t ) .  This function 
may be defined recursively as follows: 

Reg (0) = 0, 

1 + Reg ( t l )  if Reg ( t l )  = Reg ( t2) ,  
Reg ( p t )  =I  max {Reg ( tl) ,  Reg ( t2 ) }  otherwise. 

The average number D,, of registers needed to evaluate a binary tree of size n 
(Le. n internal nodes) assuming that all binary trees of size n are equally likely is a 
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well studied quantity [7], [ 121, [ 161. It satisfies 

D,, = log, n + D(log, n )  + 0 (‘Zn), - 

where D is a periodic function with period 1 and known Fourier coefficients and log* n 
denotes an unspecified power of log n (usually different powers in different situations). 

The aim of the present paper is twofold. Firstly, we give an alternative proof of 
this result, which is based on an analytic technique “i la Odlyzko” that has proved 
to be very helpful in tree enumeration problems (see [9], [17]); this alternative proof 
permits us if needed to derive asymptotic expansions of D, to any order. 

Then we show that this approach extends easily to more general classes of trees: 
assume that unary operations like -, sin, exp, log, etc, * , are also permitted. There 
we have to deal with unary-binary trees, possibly with weights, according to the number 
of unary and binary operations allowed. (See 0 3 for precise definitions.) 

The register function is also defined on unary-binary trees in an obvious way: it 
is clear that unary nodes do not affect the register function. More precisely, for a 
unary-binary tree t, the register function Reg ( t )  is defined inductively by: 

Reg (0) = 0, 

1 + Reg ( t l )  if Reg ( tl) = Reg ( t2) ,  
max {Reg ( tl), Reg ( t2 ) )  otherwise. 

In 0 3 we consider the average number of registers needed to evaluate a unary- 
binary tree. The analysis that we develop for binary trees (§ 2) can be translated to 
this more general case since the unary-binary trees are obtained from the binary trees 
by a simple substitution operation. As a consequence, all the generating functions 
needed for the analysis are obtained from the corresponding ones for binary trees via 
a simple substitution. 

The singularity analysis that we are going to use in this paper is based on an 
extension to complex arguments of the Mellin transform inversion theorem. It can be 
applied to several problems in the analysis of algorithms. We mention height of trees 
[2], register allocation [7], [12], [16] and odd-even merge [8], [19]. The advantage is 
that asymptotic expansions to any order can be derived rather simply, as the generating 
functions are usually much easier to approximate in a neighbourhood of their sin- 
gularities than their Taylor coefficients; also Mellin transform techniques constitute a 
rather powerful tool when dealing with number theoretic functions (here the dyadic 
valuation). 

2. The register function of binary trees revisited. In order to rederive the formula 
for D,, we need several generating functions, which can be most easily obtained by a 
simple translation from so-called symbolic equations [6]: If A and B are families of 

trees, then we write A for the set of all trees consisting of a root, a left subtree 

tl  E A and a right subtree t2 E B. The family 93 of binary trees is then described by the 
symbolic equation 

A B  

n 
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If we define the family 3p to be the family of all binary trees t with Reg ( t )  = p, 
then the definition of the register function easily carries over to: 

i < P  

3e,=n. 

Let R p ( z )  denote the generating function of the family BP i.e. 
size( t )  R p ( z ) =  c z , 

1492, 

It is known [7], [12], [16] that 
-2, - 1 

where F,(z) is the ith Fibonacci polynomial: 

Y' -li 
F , ( Z )  =- 

Y - 7  
r = r ( z )  = J1-4z. 1 - r  j k -  

2 '  
l + r  , withy=- 

2 '  

The generating function of the cumulated register values is 

E(z)  = c P' R p W .  
p l l  

The sought average 0, is then 

where 
size( t )  B ( z ) =  z 

t€B  

is the generating function of all binary trees and [ z"]f denotes the nth Taylor coefficient 
of the power series J": 

From the defining equation for 93 one obtains immediately 

~ ( z )  = 1 + z ( B ( z ) ) ~ ,  or B = (1 - r(z))/2z. 

Using the substitution [2] 

U 1 - r  
( l + u ) 2  l + r '  

4-b u=- Z =  

we easily find 

u2p 1-u2 
C V2(k)Uk9 -- I - U 2  

l.4 k l l  
E(z)  =- c P 2 p + ' -  - u p 2 1  1-u 

where v2( k )  is the dyadic valuation of k, defined as 

v2( k )  = max { i I 2' divides k}. 

We want to extract [ z " ] E ( z )  by means of Cauchy's formula, viz. 

where I' is a path as depicted in Fig. 1. 
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FIG. 1 

To be more precise, let 0 < 6 < ~ / 2 ,  w > 0 and p > $. Then I' = ro U rl U r2 with 

For this, we have to show that E ( z )  has an appropriate analytic continuation in a 
domain which properly contains r. 

Following the general strategy developed in [9 ] ,  we can, provided we have an 
approximation of E ( z )  about i, "translate" it to an approximation of the coefficients 
[ z " ] E ( z )  given by the Cauchy integral ( 1 ) .  This is a fairly straightforward process 
once the approximation of E ( z )  is known. So our task is reduced to the problem of 
obtaining an expansion of the form: 

E ( z )  - a * r ' log r +  p r +  - * , 

where r = J1-42 ,  in a sector about i which contains the line segment of r; the 
contribution of the Cauchy integral ( 1 )  of the part of the circle with radius >$ is 
negligible. 

Now, since 

the unit circle IuI = 1 is a natural boundary of this function. ,The natuLe of the, mapping; 
z = z ( u )  is such that the boundary of the unit circle in the u-plane is mapped on the 
s a y  Re ( z )  Z$, Im ( z )  = 0, and this halfray thus constitutes a natural boundary for 
E ( z ) .  From the preceding remark we are free to choose any contour that simply 
encircles the origin without crossing the halfray and in particular we can take the 
contour r of Fig. 1 .  

What remains to do is thus to find a local expansion of E ( z )  about z =a. This 
will be done by the use of the Mellin transform. (See [4], [20] for more information 
about the Mellin transform and [6], [ 181 for some applications in Computer Science.) 

We set u = e-t* and 
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Since v2( 2 k) = 1 + v2( k) and v2( 2 k + 1) = 0, we easily find 

and SQ 

V*(s )  = r(s)'(s), Re (s) > 1. 
2" - 1 

The Mellin inversion formula gives 

V ( t )  =- 12+im V*(s)t-"ds, 
2Tl 2-im 

and we can shift the line of integration to the left as far as we please if we only take 
the residues into account. 

The reader might be puzzled that we use the Mellin transform of functions of a 
complex variable. But we actually do not need more than 

a reference for this is for example [l, p. 911. 
Thus we find an asymptotic series for V ( t )  via 

V( t )  - Res ( V*(s) t -") .  
Re ( s ) L  1 

The main contributions come from s = 1, s = 0, s = 2kvi/log 2, (k  # 0). The residue at 
s = 1 is easily found to be 

t 

By using local expansions of I'(s), l(s), (2" - l)-' and t-" we find the residue at s = 0, 
resp. at s = x k  := 2k7rillog 2: 

1 1 1 Y -log2 t--log227r+-+ 2 2 4 2log2 

and the residue at s = Xk. 

Putting things together, we find ( z  + 1/4, i.e. t + 0) 

E(z)=f*log;! t+K* f +  2ckf*-Xk+2+O(f2) 
k#O 

with 

1 Y  
2 log2' 

K = -log2 27r+-+- 

Now e-' = u and u = (1 - r ) /  (1 + r )  with r = 41 - 42; thus 

1 - r  
l + r  

t =-log-- - 2r + O( r3) ,  
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E ( z )  =2r  log2 r+2(K+ l ) r + 4  ckr1-*k+2+ O(r2).  
k#O 

So we find an asymptotic expansion for [z"]E(z), as announced earlier, by looking 
at [z"]2r log2 r, [zn]2( K + 1)r and so on. For this, we refer to [9], [ 101, [ 111, [ 131: 

[2"](1 - z y  = n-a-l  (1 + 0 (i)), Q # 0,1,2, , n-4 
log" n -a-1 - n - a - l l o g n  n 

[z"] log (1 - z) (1 - z)a = + r(-Q) (r(--Q )I2 
Using known values of I?( -4) and r'( -$) this gives us 

-3 /2  -3 /2  n logn n 
[z"]log(l-z).  (1-2)'/2= +- (7+21og2-2)+0 

2 G  2G 

Hence 

-logn+- 1 (z+log 2- 1) - (K + l)+& C k n x k / ,  + O ( F ) .  
On - 2 log& log 2 2 k#O r ( ( X k  - 1)/2) 

Using the duplication formula for the gamma function [21], we can simplify: 

4 G C k  l ( x k ) r ( x k / 2 ) ( x k  - 1)  
r ( ( x k  - = log 2 

and state [7], [12]: Zkwi*log, n Finally we notice that n X k / ,  = e 

is given by 
THEOREM 1. The average number of registers to evaluate a binary tree with n nodes 

fl 
I 

Dn=log4n+D(log4n)+0 
Y 

where D(x )  is a periodic function with period 1. This function can be expanded as a 
convergent Fourier series D(x) = Z k c Z  k , and d e2k?rix 

Remark that the constant do was erroneously stated in [7]. 

3. The register function of unary-binary trees. The symbolic equation: 

4 = Co . El + c1 .?+ c2AA 
6 4  a 

describes a family of unary-binary trees, where the weights fulfill co > 0, c1 1 0, c2 > 0. 
The interpretation is that we have co different types of nullary nodes, c1 unary nodes 
and c, binary nodes. For example, if the set of operators and variables is {x, y, t, T; 
4, log, sin; +, x}, then co=4, c1 = 3  and c2=2. 
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We can obtain 4 from the family 93 of binary trees by means of the following 
substitution process: Above each leaf insert a sequence of unary nodes, viz. 

Above each binary node insert a sequence of unary nodes, viz. 

O - , T * .  
A 

For plain binary trees, y B ( y z )  is the series enumerating 93, where y marks a leaf and 
z marks an internal node. Thus the corresponding series for 4 is obtained by the 
substitutions 

(2) 

COY 

1 - c1z' Y - ,  

c2z z - ,  
1 - clz' 

Let be the generating function of the trees in 4 and be the generating 
function of the trees in &,,, i.e. the trees in 4 with register function=p. Since the 
substitutions do not change the register function of the involved trees, we can find i%p 
from Bp by the substitutions (2). 

We can define the size of a tree in 6 in two ways: 
(1) we count leaves and internal nodes, 
(2) we only count internal nodes. 

In terms of generating functions (1) corresponds to the transformation 

while (2) corresponds to: 

We can treat both cases together by considering the more general transformation: 

(3) 

where c,, c&hO and c,#O@c&=O. So all we have to do in order to compute the 
average register function fin of all trees of size n is to perform the transformation in 
the expansion 

E ( 2 )  = 2 r log2 r + 2( K + 1) r + 4 + 2 + O( r2)  
k f O  

and in 
B( z )  = 2 - 2r + O( r2).  

We are interested in 
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Since the factor ( coz + ch)/( 1 - clz) appears both in the numerator and the denominator 
and is regular at the dominant singularity of 4, we can write 

Let q(z) = ( c,z + ch)c2z/( 1 - c1z)*. We have to express r(cp(z)) in terms of ?= 
(1 - z / u ) ' / ~ ,  where u is the singularity of r(cp(z))  nearest to the origin; cr plays the 
role that f plays in the case of binary trees: 

1 
r(cp(z)) =I J1-(2c, +4c&)z+ (c:-4c,c2)z2; 

1 - c1z 

u is one of the solutions sl, s2 of 

(c: - 4coc2)z2 - (2C] + 4ChC2)Z + 1 = 0, 

s1,2 = 2 

i.e. 

C] + 2c&c2 f 2Jc2 * Jchc, + Ch2C2 + c, 
c1 -4coc2 

(a) We assume first that c: Z 4CoC2 and cy + 2chc2 > 0. Then s1 Z -s2. We set u = s2 
and 6 = sl. If c: < 4c0c2, then u is the singularity closest to the origin and 161 > lul. If 
c: > 4C&, this is also true, because 

c1 + 2c6c2 - 2&Jchcl + ch2c2 + co > o 
c: + 4c;c1c, + 4c0 I 2  c2 2 > 4chq c, + 4c0 I2 c2 2 + 4C0C2 

e C: > 4C&. 
So we have 

( c: - 4 co c,) z2 - (2 c1 + 4 c; c2) z + 1 = ( c: - 4 co c2) ( z - a) ( 2 - a) 
and thus as z +  cr 

(c : -4c ,c~)z2- (2c~+4c~c~)z+1 -(c:-4c,c2)(z-u)(cr-6) 

= 4&/c;c, + ch2c2 + c, u * (1  -5). 
Hence 

(b) If c:=4coc2, then - 
*J1-(2cl+4chc2)z=A. 

1 
1-c,cr r(cp(z))  = 

with 
1 

and A =  1 
u =  2C1-k 4ChC2 1 - c p '  

(c) If c1 + 2chc2 = 0, we have 6 = -u. This means c1 = 0 and c; = 0, so that we have 
to consider 

[z"]c0zE( coc2z2) - [z"-']E( coc2z2) 
[ z"]c,zB( coc2z2) - [ z"-']B( c0c2z2)' 
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In this case n has to be odd, n = 2 N + 1, and we substitute z2 = w and have to consider 

[ W N  1 E ( COC2 w 1 
CwN1B(coc2w) ' 

which is as in the other cases. 
In order to compute fi,, up to a relative error of O( 1/ n) ,  we can use 

* [ [z"] - 431 
= log, n + D(log, n - log, A) - log, A. 

If we consider (according to case (c)) 

this is, up to a relative error of O( l / n ) ,  equal to 

This leads us to our main theorem. 
THEOREM 2. Given a family 4 of unary-binary trees: 

co>o, C,>O, c , z o ,  9+c2A 4 = co O+Cl - 
4 4  4 

the average register function &, where all trees of size n are equally likely (if the size is 
measured by the number of internal nodes and leaves, we set c& = 0; if the size is just the 
number of internal nodes, we'set cb := co and co := 0) ,  is given by: 

(a) If c: # 4C& and c1 + 2c&c,> 0, set 

c1 + 2c&c2 - 2&&c1 + C&,C, + c, 
U =  

c: - 4coc2 

and 
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then 

f i n  = log, n + D(lOg4 n - log2 A) - log2 A + 0 (F), ( n - , a ) .  

(b) If c:=4coc2, set 

1 1 a= and A= 
2 C 1 - k  4C& l - c l a '  

Then 

bn =log, n + D(log4 n -log2 A) -log2 A +  O ( T )  , ( n  -+ a). 

(c) If c1 + 2c&c2 = 0, then for odd n, we have with a, A defined as in (a): 

1 1 log" n 
2 

bn = log4 n + D  l o g  n -log2 A - 5 )  -log2 A--+ 0 (7) , (n -+ a). 

Example. Let us consider the Motzkin trees, defined by: 

A = O + P +  A. 
A M A  

Let a leaf contribute to the size. The generating function of the numbers of Motzkin 
trees satisfies M (  z) = z( 1 + M (  z )  + M (  z ) ~ ) ,  whence 

1 - z -41 - 22 - 3z2 
22 

M ( z )  = Y 

co = 1, c; = 0, cl = 1 , c2 = 1, a = 1/3, A = A. The average number fin of registers needed 
to evaluate a Motzkin tree of size n is then 

A 1 1 log" n 
On =log, n + D log, n --log2 3) -2 log2 3 +  ~ ( y )  , ( n  + a), ( 2  

where D ( x )  is the periodic function of Theorem 1. We may mention that 

log, n - $ log2 3 = log, $n. 

4. Conclusions. The path we have taken is general enough to enable us to treat 
the asymptotics of sums of the form 

(4 )  

(where instead of binomial coefficients, differences of binomial coefficients may 
appear), when { a k } k z *  is an arithmetic sequence, i.e. a sequence such that the Dirichlet 
generating function 

a ( S ) =  Q k k - s  
k L 1  

is meromorphic and well enough behaved towards i a .  Such sums appear in the analysis 
of algorithms in at least the following three cases: 

( 1 )  height of trees [2]; 
(2) register allocation [7], [12], [16]; 
(3) odd-even merge [ S I ,  [19]. 
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of 

The methods that have been employed to analyse sums of the form (4) are: 
(A) With the Gaussian approximation of binomial coefficients, replace the study 

S, in (4) by the study of S*(l/&) where: 
I 

( 5 )  

and use Mellin transform techniques to evaluate ( 5 )  asymptotically. This is the way 
taken originally by de Bruijn, Knuth and Rice [2] (problem l) ,  Kemp [12] (problem 
2) and Sedgewick [19] (problem 3). 

(B) Use real analysis to obtain real expressions for 

a k  or A(k)= C aj 
j < k  

or A;') .  . . 

Developments based on techniques of Delange constitute the original treatment of 
register allocation in [7] (problem 2), and have been applied to rederive Sedgewick's 
solution to [8] (problem 3). In the context of problem 1, they lead to an elementary 
derivation of the main terms of the expected height of general trees (this fact has been 
pointed out to us by L. Guibas). 

(C) Use singularity analysis of the generating function of the S,, 

S(z)= c snzn 
nBO 

as we have done in this paper. The method has the advantage of allowing rather simply 
ddvation of asymptotic expansions to any order and also generalises easily, as we 
have seen, to cases where binomial coefficients are'replaced by trinomial coefficients 
or even more generally to coefficients of powers of some fixed function. It could 
therefore have been applied to problems 1 and 3 as well; interestingly enough, this is 
the way Knuth started his partial attack to problem 3 [ 14, ex. 5.2.2.16, p. 135 and p. 607). 

Acknowledgment. We would like to thank one of the referees for pointing out a 
reference to a further paper dealing with register problems [22]. 
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