THE REGISTER FUNCTION FOR LATTICE PATHS
GUY LOUCHARD AND HELMUT PRODINGER

ABSTRACT. The register function for binary trees is the minimal number of extra
registers required to evaluate the tree. This concept is also known as Horton-
Strahler numbers. We extend this definition to lattice paths, built from steps +1,
without positivity restriction. Exact expressions are derived for appropriate gener-
ating functions. A procedure is presented how to get asymptotics of all moments,
in an almost automatic way; this is based on an earlier paper of the authors.

1. INTRODUCTION

The register function of binary trees was introduced by Ershov [7]; the equiva-
lent notion of (Horton-)Strahler numbers was introduced earlier by hydrogeologists
Horton [14] and Strahler [25].

This function is recursively defined by reg(J) = 0, and, if a binary tree 7" has
subtrees T} and Ty, then reg(7") = max{reg(7}), reg(1s)}, provided reg(7}) # reg(15),
otherwise it is 1 + reg(7}).

Assuming all binary trees with n internal nodes to be equally likely, the average
value of the register function was found independently and at the same time [12, 16];
compare also [21]. It is logsn + O(1), and more precision is available and involves
complicated (fluctuating) terms.

The concept has been extended to unary-binary trees [10]. Various papers about
the register function (or Horton-Strahler numbers) have been written; we cite a few
here [5, 17, 22, 27, 24].

Auber et al. [1] have introduced a generalisation to general rooted trees, see also
[6].
Binary trees are enumerated by Catalan numbers, and nonnegative lattice paths,
with steps £1, returning to level 0, as well. We will describe such lattice paths in the
popular notation of well-formed words over the alphabet {(,)}, with n parantheses
of each type. (Well-formed means that, when scanning the word from left to right,
there are never more closing than opening brackets.) There is the formal equation

D=(D)D+¢

for the family of nonnegative paths, with £ denoting the empty word.

This decomposition, according to the first return to the 0O-level, can be used to
encode binary trees, since binary trees satisfy essentially the same equation. Conse-
quently, the register function can be defined on the set of nonnegative lattice paths
(returning to the 0-level), by borrowing the definition from the binary trees.

We will make use of known formulee: Denote by R,(z) and S,(z) the generating
function where the coefficient of 2™ is the number of trees with n nodes and register
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function = p resp. > p. (Equivalenty, the number of paths of length 2n with these
properties.) Then

1—u? o

Ry(z) = w1 — w2t (1)
1—u? u”

Sp(z) = R E—TE (2)

with the substitution z = (H—Lu)Q
Now comes the new contribution of this paper: we also allow the paths to go below
the x-axis. There are (2”) such paths of length 2n.

If we denote the family of these paths by A, then our decomposition extends to

A= (D)A +)D(A + &,
where D is just a copy of D with opening and closing parentheses exchanged, in other
words, it describes nonpositive paths.

These paths have a straight forward interpretation as marked binary trees: Each
left edge, which has as predecessors only right edges, gets a label from {pos, neg},
indicating, whether the first excursion is strictly positive or strictly negative.

For the register function, we just borrow it from this corresponding tree, ignoring
the extra labels. We can formulate this directly in terms of paths:

reg ((w)z) = reg ()w(z ) = max{reg(w), reg(z)},
if reg(w) # reg(x), otherwise 1 + reg(w), and reg(e) = 0.

In the following sections, we first derive explicit expressions for the probability
that a random path of length 2n has register function > p (the instance of register
function = p follows from that by taking differences). We derive in particular an
exact expression for the average; exact expressions for higher moments are possible,
but become messy.

However, we evaluate the higher moments asymptotically. First, it is shown that
the asymptotic distribution in our register instance is the same as in the classical
register problem for binary trees (lower order terms are different, though). Thus, the
asymptotic analysis of moments applies to both, the classical instance, and the one
presented in this paper.

The machinery to achieve an almost automatic computation of the moments was
presented in our earlier paper [20]. The analysis of the register instance was not
included, because of the restriction on the length of this paper. Now we feel that it
is a good opportunity that this treatment can go into print.

There are some related parameters, like the size of the maximal complete subtree
in a binary tree. Our methods apply here as well, but we do not include that here,
as it would lead us a bit far apart.

Some technical considerations that are in [20] are not repeated here, to allow for a
smooth reading.

2. GENERATING FUNCTIONS

Let I,(z) and J,(2) be the generating function of paths (unrestricted), with register
function = p resp. > p. The register random variable related to a path of length
2n is denoted by X,: P{X,, = p} = [2"]],(2)/(*"). This will later be denoted by
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1—P(p—1). We will find a recursion for J, ( ). Of course, the coefficient of 2" refers
to paths of length 2n, and Jy(2) = A(z) = ¢1—T’ the generating function of all paths.

The following recursion is known [23]:
Sp = ZS;_I + Z(D — Sp_l)Sp + ZSp(D — Sp_l), (3)

where

1—+v1—-4z )
2z

is the generating function of binary trees (and of nonnegative lattice paths). This re-
cursion is an immediate translation of the definition of the register function. The same
type of reasoning leads to the following recursion, which we state as a proposition.

D=D(z) =

Proposition 2.1.
Jp =228, 1Jp—1 +22(D — Sp_1)Jp + 22(A — Jp1)S). (5)
The solution is stated as a theorem, with the standard substitution z = u/(1+u)*:
Theorem 1.

(1+wu)? 2Pu® 1+u u*

o= v (I—u?)? “1—ul—u?

. (6)

Proof. Once the formula is known, the verification is routine, and can be done by a
computer. In order to find it, however, one has to solve the first-order recursion by
iteration. Doing this, the following sum appears:

p—1 ok
1—u 2

M

k=0
which, quite amazingly, has the explicit evaluation

1—u?
op-1

2(1 —u) —
U

In order to study the average value of the register function, we must consider
E(z) =3, Jp- Note that

where v3(n) is the number of trailing zeroes in the binary representation of n. Simi-
larly,

D L e S
p>1 p,k>1 n>1

To read off coefficients, we notice the formula

2" f(2) = [u")(1 = u)(1+w)*" 1 f (= (u)), (7)
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see [4], which is obtained by Cauchy’s integral formula and a change of variable. Thus
we compute

FIB() = [0 = )1+ a) S Rkt — 21+ 0 3 vl

= ; keva (k) [u" R (1 — u; (>11+ )’ — 2 ; Ug(k)uk[u:>;](l +u)?"
_ ;kUQ(k){(n?;—_lk) - <2n+ 1)} - 2;02 ( )

Normalising, we get the following explicit result.

Theorem 2. The average value of the register function, considering all (unrestricted)
lattice path of length 2n to be equally likely, is given by

2n + 1 2n + 1 2n
E — -2 .

Altematz’vely, it can be written as
2n 2n 2n
-2 —k .
ey () 20 0) + )

Note the similar formula for binary trees:

%§u2(k)[(n +21”_ k) —2(712_71,{) * (n —21n— kﬂ

The asymptotic evaluation of this (and higher moments) will be studied in the next
sections.
In particular, we will prove

Theorem 3. The average number of registers is asymptotic to

v 1 1 —lmilogyn
—(hr—1—-2)+-+——; ZF(_X1/2><(_X1)(XL +1)erimioe
with x, := 2lmwi/In4. O

Formulee for I, = J, — J,41 and its coefficients can also be given.

Note that
1+u
p, k2P k2P
U 2—1 vy E ue.

k>1 k>1

(2) = (14 u)

Thus
(2" Jp(2) = [u"](1 —u)(1+ u)2"_1—(1 ZU) Z k2P k2"

k>1

[0 = ) (1 oS

k>1
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= R TR = w) (14 u)? T =2 (L )

k>1 k>1
2n+1 2n +1 2n
= k2P — -2 :
; [(n +1— k2p) (n - k2p>} ; (n - k:21”)

Therefore we find the following formula for the probability that a random path of
length 2n has register function > p‘
2n+1 ) (2n+1

) Zka n+1 k:2(_) nkZP _22 nkip ' (8)

k>1 k>1

This can be approximated by

Z < 94 k;24p+1>€_k24p/n' (9)

n
k>1

We just give the following remark about this: The approximation of binomial coeffi-
cients viz. (n2_"k) / (2:) for |k| < n2*¢ is well known (it appears in all the earlier papers
on the register function); it is just a consequence of Stirling’s approximation of the
factorials. Outside this range, the quantity is exponentially small. A careful error
analysis of similar expressions can be found in [§].

For the classical register problem, the same quantity arises, with differences only
in lower order terms that are not displayed. This shows that the register function is

quite immune to the input model.

3. SEMI-AUTOMATIC COMPUTATION OF MOMENTS: AN OUTLINE

We will use the following paradigm: to compute the asymptotics of the moments,
we use the techniques described in great detail in Louchard and Prodinger [20], which
are usually simpler than the ones found in the literature. We encounter extreme-value
(Gumbel-like) related distributions functions. The Gumbel distribution function is
given by exp(—exp(—z)). If we compare this approach with other ones that appeared
previously, then we can notice the following. Traditionally, one would stay with
exact enumerations as long as possible, and only at a late stage move to asymptotics.
Doing this, one would, in terms of asymptotics, carry many unimportant contributions
around, which makes the computations quite heavy, especially when it comes to higher
moments. Here, however, approximations are carried out as early as possible, and this
allows for streamlined (and often automatic) computations of the higher moments.

Note that the distributions that we can handle do not converge in the weak sense,
they do however converge along subsequences n,, for which the fractional part of
log n,,, is constant (the logarithm is to a base that will be specified).

Here are the main steps of our approach.

We set

) =B{X,=j},  P():=P{X, < j}
(Note that P(j) =1 — [z"]S41(2)/(*").)

We write logn for logg n; the base @ will be given later. Setting n = j —logn, we

will first compute f and F' such that

p(G)~ f(m),  P(G)~F(n), n—oo,
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and, of course,
fn) =Fn) = F(n—1).
(That is why we do not use/need the dependency on n in the notation of p(j) and
P(j) just introduced; F'(z) is of the Gumbel type.)
Asymptotically, the distribution will be a periodic function of the fractional part
of logn.
Next, we are going to show that

B (X3) = 5"p0) ~ Y (n+logn) [F(n) = F(n = 1)]. (10)

J

by computing a suitable rate of convergence (in particular for large and small values
of m). This is related to a uniform integrability condition (see Loeve [18, Section
11.4].)

So, once we gain enough knowledge about the function F'(z), we know the moments.
This will be achieved essentially by using the Mellin transform technique. For F(z)
that are related to the Gumbel distribution (details are in the following lemma),
the desired asymptotic moments come out as the coefficients of a certain generating
function, and they can be computed by Maple.

Finally we will use the following result from Hitczenko and Louchard [13], Louchard
and Prodinger [20], related to the dominant part of the moments (the ‘" sign is related
to the moments of the integer-valued random variable X,).

Lemma 1. Let a (integer-valued) random variable X, be such that P{X, —logn <
n} ~ F(n), where F(n) is the distribution function of a continuous random variable
Z with mean my, second moment ms, variance o and centered moments (. Assume

that F(n) is either an extreme-value distribution function or a convergent series of
such and that (10) is satisfied. Let

ok
o a ami
pla) = E(7) = 14+ 3 Tomy = ™ A(a),
k=1
say, with
2

o) = 14 2 = oF
() =1+ -5 —I—;Euk.
Let w, k’s (with or without subscripts) denote periodic functions of logn, with period
1 and with usually small mean and amplitude. Actually, these functions depend on
the fractional part of logn, denoted by {logn}, as usual.

Then the corresponding moments of X,, are given by

+oo
E(X, —logn) ~ / z[F(x) — F(x — 1)]dz + w;
. ‘ . 1
=my + wi, with m1:m1—|—§,

Var(X,,) ~ E(X,, — (logn + ni; +w))?

N/_ Ooxz[F(x)—F(x—l)]dx—ﬂilQ—i-ch

[e.9]
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1
:m2+m1+§—7ﬁ12+f£2:52+/@2, with 0’2_0 +E

More generally, the centered moments of X,, are asymptotically given by ji;+k;, where
() =143 i — 2 simh (%)
(@) =1+ ; 2 He = —sin (5) ().
The neglected part is of order 1/n® with 0 < 8 < 1.

For instance, we derive

iy = 5% = iy + =
Mo = = 2 12
K3 = U3,
LA
Ha = [b4 5 30’
5 5)
M5=M5+6M3-

The moments of X,, —logn are asymptotically given by m; 4+ w;, where the generating
function of m; is given by

o(a) = / e f(n)dn =1+ Z %:Thi = Sp(a)eo‘a_ 1' (11)
o0 i=1

The convergence domain for o will be studied in Section 4. This leads to

m1:m1+§,

Thg = My + mq -+ g,
7 L B
mg =mg+ — +mq + —
3 =g 5 URAE
w; and k; will be analyzed in the next section.
Note that O(a) = ¢(a)e™*™; from this we can compute the centered moments:
~ ~ ~ 2
M2 = Mo — M
o o (12)
fi3 = M3 + 2mj — 3mam;.
Now we turn to the fluctuating components that appear invariably in the asymp-
totic expansions. We analyze the periodic component w; to be added to the moments

m;. Recall formula (10):
E(X, —logn) ~ Z (j —logn) — F(j —logn —1))(j — logn). (13)
j=1
Set y = Q™" and G( ) = F(z). Equation (13) becomes a harmonic sum

=" (Gn/Q") — G(n/Q") (—log(n/Q)),

J
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the Mellin transform of which is (for a good reference on Mellin transforms, see
Flajolet et al. [9] or Szpankowski [26])

Q°
1_—QST1(5)7 (14)

and

From this we see that (we use L =In Q)
Ti(s) = L¢' ()| ,__ .- (15)

The fundamental strip of (14) is usually of the form s € (—C4,0), C; > 0. This will
be detailed in Section 4.

Set also

To(s) = Lo(a) 15(0) = L.

We assume now that all poles of I?SQST’{(S) are simple, which will be the case here,
and given by s = x;, with x, := 2lwi/L, | € Z; usually one has to distinguish the case
[ = 0 from the others.

Using Mellin’s inversion formula viz.

a=—Ls’

) 1 Cy+ioco Qs
E = — ——T7 —d —C; <0y <0
™= o /coo g e e

the asymptotic expression of E(!)(n) is obtained by moving the line of integration to
the right, for instance to the line ® = C; > 0, taking residues into account (with a
negative sign). This gives

s

EW(n) = — Res [—ST’{(s)n_s} — Z Res [Q—ST’{(S)n_S] +O(n=).
1-@Q s=0 %0 1-@ s=X
(16)
The residue at s = 0 gives of course
my = Y7(0)/L = ¢/(0).
The other residues lead to
1 .
w, = Z Z T»{(Xl)e—%mlogn‘ (17)
1£0
More generally,
E(X, —logn)* ~ my, + wy,
with .
wy, = Z Z Tz(Xl)ethrilogn’ (18)
1£0
and

Ti(s) = Lo (a)]

a=—Ls’
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To compute the periodic component k; to be added to the centered moments fi;,
we first set

my = my + wy.

The variance of X,, — logn is asymptotically given by
E[(X, —logn —my)?] ~ 1My + wy — m3 = fiy + ko.
The third centered moment is asymptotically given by
E[(X, —logn —my)?] ~ M3 + ws — 3(Mg + wa)my + 3m; —m? = fig + Ka.

More generally, we start from

= ak e —1
oz):zl—l—zymk:go(a) —
k=1 "

We replace my by my + wg, leading to

Pp(cx )+ Z _wk
But since ¢(2imi) = 0 for all | € Z, we have

Z ¢(_LXI)€—2l7rilogn =0,
140

so we obtain

6,(0) = d(a) + Z Z ¢(k)(a) e—2l7rilogn%
k=0 10 o==lx :
a) + Z ¢(a _ LXl)e—le’logn (19)
10
— Z ¢<Oé _ LXZ)B_le“Ogn.

leZ

Finally, we compute

ok
Op(a) = gp(a)e™™™ = Z T (fu, + ki) ) + Z o (20)

leading to the (exponential) generating function of kj. The first few instances are

Ro = Wy — ”LU% — 27”71/1?1}1, (21>
K3 = 6miw, + 6Mmw; + 2w — 3Maw; — 3wy — 3wiw, + ws.

All algebraic manipulations in this context are mechanically performed by Maple.
We give explicit expressions for fis, ko, fi3 and k3 for illustration.

It will appear that Y;(s) are analytic functions (in some domain), depending on
classical functions such as I, . The justification of (16) is by contour integration,
see [20] for details.

It is not always evident that the limiting function F'(n) is indeed a distribution
function. But here we can use the following lemma from Janson [15]. Assume that
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Y, is a sequence of integer-valued random variables that is monotone. If, for every
sequence of integers k,,

P{Y, < k,} = F(k, — an) + 0o(1), n — 0o,

for a right-continuous function F' with lim, o F(z) = 0, lim, . F'(z) = 1 and a
sequence a,, such that a,, — oo and a, 1 —a, — 0 as n — oo, then F'is a distribution
function.

These conditions are satisfied in our case. We apply the presented machinery in
the next section to the number of registers.

4. THE MOMENTS FOR THE NUMBER OF REGISTERS

From Flajolet [8], Flajolet and Prodinger [10], Louchard [19] and Section 2 we have

P(]) ~ 1+ 22(1 — 2k24j+1/n)e_k24j+1/"’
k=1

(e 9]

p(j) ~ 2 Z (2k247 Jn — 1)e F* 4/,
k odd >0

Let n = 7 — log, n; this leads to

F(p)=1+2) (1—8k*me 4",
k=1

(22)

o0

f) =2 % (k47— 1)e ™,

k odd >0

where we recognize the Gumbel distribution (Compare also [12, 16].)

We have no rate of convergence problem here: the convergence of moments has
been proved in Flajolet [8].

It is easier in this case to start from f(n) given by (22) and to compute

—+00

o) = / e ().

[e.9]

Setting y = 27 and using Mellin transforms, this gives
¢la) = T(/2)(€ - 1)C(€) 1 - 27%)/L],_,,,,  —o0<R(a) < oo,

as shown in Louchard [19]; compare also Biane and Yor [3] and Biane, Pitman and
Yor [2]. It is easy to check that there is no singularity at « = 0, « = L, « = —2kL,
k>0.

The fundamental strip for (14) is R(s) € (—o0, 0).

Let us first analyze X := X,, —log, n. After all computations (we must be careful
about the presence of log,), and setting

Yo = lim {i (lﬂii)’“ (I

)k’—l—l

n—00 Py k -+ 1
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also called the Stieltjes constants, we derive

ﬁn:%(lnw—l—%)—l—%,

My = ﬁ(—anﬂ—’ylnﬂ+fy+%772 — %72—1—111277—271) +%(ln7r— 1— %) + %,

mg = %(— §7r2+ 272 - 136%27+ Z—Z((3) — gvg — 3717 + 671 — 372 — 3In’ 7 — ;71n27r
+3ylnm — ?1’7211171'—6’}/111171'4- Z?T21n7r+ln37r)
—|—%<— 272—1—;7—311177—}—;ln27r—3fyl+%7r2 — ;’ylnﬁ>
+%(1n7r—1—%)+%,

_ 1 7
p3 = E(—2—372—6717—273+1C(3)>-

my was computed in Flajolet and Prodinger [10], ms was computed in Louchard [19].
Let us now turn to the fluctuating components. First of all, (15) and (17) lead to

W=~ 3 (/) g + e
140

Note that, in the exponent of the Fourier component, we have now —I[milogn. Equa-
tions (19) and (20) lead to

Ko = —2w; — w} + %wl(—2ln7r +7)
1 .
2 ST /2) (2 () + D)+ (/D0 1)+ 20 (g e
1£0

3
K3 = @wl(lfi—i— 107? —8yln7 +8In7w? — 8yL — 16L + 16L1In

8y —16In7 +8L% — 72 + 1671>

3
+wa(21n7r—7—2+2L) + 2w}

+ 23 30T/ (= S (x/2) 00+ 1) = 3¢ (x4 + 1)
140

+3¢C(=x)¥(—x/2) + ;C(—XZW(—X;/?)(XI +1)(2Lw; —y — 2+ 2L +21n7)
- ZC(—XZW(L —x,/2)(x; + 1) = 3¢(=x)(2In7T — 4 — 2+ 2L 4 2Lwy)

+ C'(_Xl)[fi + 3(2 Inm + 2Lw; — ¥+ 21, — 2)(Xl + 1)] o 3<’//(_X1)(Xl + 1)>6—l7rilogn.

The expression for w; is identical to the expressions given in Flajolet and Prodinger
[10].
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5. CONCLUSION

We plan to investigate other models of paths in the context of the register function
a future paper.
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