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TOPOLOGIES ON FREE MONOIDS
INDUCED BY FAMILIES OF LANGUAGES (*)

by Helmut PRODINGER (')

Communicated by M. NIVAT

Abstract. — For ¥ <SP (X¥*) the language operator Anf 4 (A) is defined by | z | NAe ¥ ). It was
characterized what families # correspond to closure operators. In this paper Lhe families & are
found out corresponding to interior operators: they are filters with a special property. For the case
of principal filters & = {A|A£L} such a family is obtained iff L is a monoid. Thus from every
monoid a topology can be constructed. Further results are given.

Résumé. — Etant donné une classe de langages ¥, on définit un opérateur sur les langages
Anfz (A)={z|z2\ A€ ¥ }. On connaissait déja les familles ¥ correspondant a des opérateurs de
fermeture. Dans cet article on décrit les familles & correspondant a des opérateurs d’ouverture : ce
sont des filtres avec une propriété caractéristique. Pour le cas de filtres principaux ¥ = { A|A2L |
cette propriete caracteristique est que L soit un monoide. Par consequent on peut construire une
topologie pour chaque monoide L. D’autres resultats sont formulés dans Iarticle.

I. INTRODUCTION

In [2] there are considered some special topologies on the free monoid Z*.
For the sake of brevity, the reader is assumed to have a certain knowledge of
this paper. If % is a family of languages, let Anf, (4)= {z|z2\ Ae.Z }. It has
been characterized in terms of 4 axioms what families % produce closure
operators Anfg. (So we know what families induce a topology on Z*; from
now on we call them #-topologies.) Furthermore it was possible to know from
the family of open sets whether or not the topology on Z* was an #-topology.

In Section 2 we make some further remarks on our former paper.

It 1s well known that a topology can be described in some ways: closure
operator, family of open sets, interior operator, neighbourhood system, etc. (We
refer for topological conceptions to [1].) The first two ways with respect to
Z-topologies are already considered in [2]; in Sections 3 and 4 the third and
fourth possibility of generating an #-topology are discussed.

(*) Received July 1981, revised December 1982.
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2 ADDITIONAL REMARKS ON OUR FIRST STUDY OF ZL-TOPOLOGIES

We present a further example of an Z-topology: Let A/w= {2 |zwe 4} and
assume zeX* to be fixed. Let ¢.(4): = U A/z" It 1s easy Lo see that o,

n=0

fulfills the axioms (A1)-(A4) and is therefore a closure operator. Now, since
(xN\A)/y=x\(4/y), it follows that:

(P:(_W\A)=w\\(pf(A') for all weX*.

So . is leftquotient-permutable and thus by Lemma 2.7 of [2] ¢.=Anfe,
where Z.= {A|ee@.(4)} ={ A | there exists an ne No such that z"e 4 L For
z—=¢ we obtain the discrete topology.

It is clear how this situation can be generalized. Let M < X* be a submonoid
and @u(A4): = U A/m, then @y is the closure operator of an Z#-topology

me M
with Zy={A|MNA#D}.

We present in short some examples of topologies which are not #-
topologies:

The closure operator L+ LZ*; the closure operator Lis2*L; the (30
called) left topology; let us recall that the right topology is an .Z-topology
(with closure operator Init).

TueOREM 2.1: The following 3 statements are equivalent:

(i) Xy is a Ty-space (i.e. each set { x | is closed);

(ii) 0(%) contains no set of cardinality 1;

(iii) ¢ (%) contains no finite set.

Proof- The equivalence of (i) and (1) has been already proved in [2].
Trivially, (iii) implies (i1). Now assume that (i) holds and Led (%) be a finite
set. Then, by (i), L is closed. But a set L in 0(.%) can never be closed, because
eNL=Led(¥)=Z and e¢ L.

3. INTERIOR OPERATORS AND #-TOPOLOGIES

For a given topology, let I be the interior operator, defined by I(A)=(A°)
(sometimes written as 4°).

TueoreM 3.1: The interior operator of an L-topology is leftquotient-
permutable; the corresponding family £ is given by:

P={A|A¢ZL}.
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Proof: Since (x\ B)"=x\B‘ and Anf, (x\ B)=x\Anf & (B), we have:

[(xN\A)=[Anfg (N A))] =[Anf s (x\A)] =[x\ Anf (4°)]
=X \JANf & (4A9)] = x\J (A4).
By [2]; Lemma 2.7, ;= { A|eel(A4)}. Now we have:
eel(A) <= ee[Anf, (A
< e¢Anfy(4A9) <« eNA¢Y <« A¢P,

thus Ae ;= A°¢ &.
Example: For & =2,(X¥*), we have ¥;= {Z*}; zel(A)<for all x holds
zx e A.

For ¥=%\U{A|leecA}, we have #;={A|A° finite and ceA);
zel(A)<>ze A and for almost all x holds zx e A.

In [2] there are given 4 axioms (T1)-(T4) which characterize the #’s leading
to closure operators [o(¥) =% is assumed to hold].

A straightforward reformulation of this axioms in terms of %, yields:

THEOREM 3.2: Let 1< {A|eeA}. Then &, leads to an interior operator
iff (11)-(14) hold:

X*e Yy, (I1)

Ae ¥, A<B = BedY%, (12)
Ae ¥, Be¥%;, = AN Be%,, (13)
Ae; < Anfg (A)e (14)

RemMARK: Similar as for % in [2], it is possible to drop the condition
LS A ‘ g€ A } and to formulate other axioms. But this is not too meaningful
and therefore omitted.

REMARK: Since £*e &, it follows Q¢ £;. This together with (I1)-(13) leads
to the surprising fact that:

¥ is a (proper) filter.
So the question arise what filters fulfill the axiom (I4). For the special case
of a principal filter ¥ (L): = { A|A=L} this can be answered:

THEOREM 3.3: & (L) fulfills axiom (14) iff ¥ is a monoid.
Proof: Let us reformulate axiom (I4) for this special situation:
Ae X (L)< Anfy 1)(A4)e & (L) means:
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Thus axiom (I4) 1s equivalent to:

LA < [zel=Lcz\Al (%)
Setting A =L, (%) imples:
2ol = Lez\L. (%%)

But a short reflection shows that (%) is also equivalent to (%) [and to (14)!]
Furthermore this means:

zeL. = [weL=wez\L]

or:
zel, wel = zwel.

Since # (L)< { A|ee A} we have g€ L, and the proof is finished.

REMARK: Each submonoid M < X* leads us to an .#-topology!

Let us recall the following fact from [2]: Let X=(Z*, ©) be an #-topology.
Then:

L =P (Z*)— { A\thﬂre is an 0e O such that e€0 and A< 0 };

this family % is unique subject to the condition ¥ =o(.Z). Now let us
compute £

Ae ¥, = A¢¥ <« A€{B|30€D:€€0 and B0}
< J0eD:ee0 and A< <= 10D :egelcA;
Lr={A|30eD :ec0c4}

and we find:

L is the filter of neighbourhoods of ¢!

By [2]; Lemma 2.13, we know 4 open<>for all xe A holds (x\A4) ¢ .7,
which now simply means:

for all xeA holds x\Ae¥!

Altogether it seems that it is easier to work with %, instead of .#'!

Now we are ready to formulate a general base representation theorem
(generalizing [2]; Theorems 3.3 and 3.4):

THEOREM 3.4: Let X=(Z*, ©) be an ¥-topology. Then:

B={xA|xeZ* Ae ¥} is a base for D.
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Proof: If 0 is open, then for all xe0 holds x\0e.%;. Thus x (x\0)e*B and
0= 4} ®(xH0),

xeD

4. SYSTEMS OF NEIGHBOURHOODS AND #-TOPOLOGIES

A further method to generate a topology is to construct a system of
neighbourhoods.

THEOREM 4.1: Let X=(X*, O) be an ¥-topology and let B (x) be the family
of neighbourhoods of x. Then:

B (x) =\ B (yx).

Proof:
B(x)={A|30eD: xe0cA} = {A|30eD: EEJC\\OEX\A};
B (px)=y\{A4]|30eD : eepyx\0=yx\4}
N\ {4|30€D : ex\OGAOSX\ON\A)}

— {N\A]|30eD: eex\ O\ Sx\(\A4) }
={A4|30eD: eex\0Sx\4}.

RemMARK: The property B (x)=y\B (yx) implies y B (x) =B (yx).
We can prove also a converse of Theorem 4.1.

THEOREM 4.2: Assume that there is a system of neighbourhoods { B (x)}
satisfying:

B (x)=y\B (yx).

Then the topology is even an £ -topology.
Proof: By [2]; Theorem 2.16 it is sufficient to show that the system of open

sets L 1s left stable.
Let O be open, 1.e. 0 is neighbourhood of all its points, 1. €.:

xel) = 0eB(x).

To show: z\ 0 is open. Let xez\0, i.e. zxe0, i.e. 0B (zx). By the
condition: z\0ez\ B (zx) =B (x).

Furthermore we have to show: z0 1s open. Let xez0, 1.€. x=2zy and ye(,
i.e. 0B (y). From the last remark: z0ezB (y) =B (zy) =B (x).
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ReMArK: We know already that %, is simply B (g). So we have for all
systems of neighbourhoods by means of the remark after Theorem 4. 1:

BxX)2xB(e)=xF;.
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