TOPOLOGIES ON FREE MONOIDS INDUCED BY FAMILIES OF LANGUAGES (*)

by Helmut Prodinger (1)

Communicated by M. NIVAT

Abstract. — For $\mathcal{L} \subseteq \mathcal{P}(\Sigma^*)$ the language operator $\operatorname{Anf}_{\mathscr{L}}(A)$ is defined by $\{z \mid z \setminus A \in \mathscr{L}\}$. It was characterized what families \mathscr{L} correspond to closure operators. In this paper the families \mathscr{L} are found out corresponding to interior operators; they are filters with a special property. For the case of principal filters $\mathscr{L} = \{A \mid A \supseteq L\}$ such a family is obtained iff L is a monoid. Thus from every monoid a topology can be constructed. Further results are given.

Résumé. — Étant donné une classe de langages \mathcal{L} , on définit un opérateur sur les langages $\operatorname{Anf}_{\mathscr{L}}(A) = \{z \mid z \setminus A \in \mathscr{L}\}$. On connaissait déjà les familles \mathscr{L} correspondant à des opérateurs de fermeture. Dans cet article on décrit les familles \mathscr{L} correspondant à des opérateurs d'ouverture : ce sont des filtres avec une propriété caractéristique. Pour le cas de filtres principaux $\mathscr{L} = \{A \mid A \supseteq L\}$ cette propriété caractéristique est que L soit un monoïde. Par conséquent on peut construire une topologie pour chaque monoïde L. D'autres résultats sont formulés dans l'article.

1. INTRODUCTION

In [2] there are considered some special topologies on the free monoid Σ^* . For the sake of brevity, the reader is assumed to have a certain knowledge of this paper. If \mathscr{L} is a family of languages, let $\operatorname{Anf}_{\mathscr{L}}(A) = \{z \mid z \setminus A \in \mathscr{L}\}$. It has been characterized in terms of 4 axioms what families \mathscr{L} produce closure operators $\operatorname{Anf}_{\mathscr{L}}$. (So we know what families induce a topology on Σ^* ; from now on we call them \mathscr{L} -topologies.) Furthermore it was possible to know from the family of open sets whether or not the topology on Σ^* was an \mathscr{L} -topology.

In Section 2 we make some further remarks on our former paper.

It is well known that a topology can be described in some ways: closure operator, family of open sets, interior operator, neighbourhood system, etc. (We refer for topological conceptions to [1].) The first two ways with respect to \mathcal{L} -topologies are already considered in [2]; in Sections 3 and 4 the third and fourth possibility of generating an \mathcal{L} -topology are discussed.

^(*) Received July 1981, revised December 1982.

⁽¹⁾ Institut für Algebra und Diskrete Mathematik, TU Wien, Gußhausstraße 27-29, 1040 Wien, Austria.

2. ADDITIONAL REMARKS ON OUR FIRST STUDY OF \mathscr{L} -TOPOLOGIES

We present a further example of an \mathcal{L} -topology: Let $A/w = \{z \mid zw \in A\}$ and assume $z \in \Sigma^*$ to be fixed. Let $\varphi_z(A) := \bigcup_{n \geq 0} A/z^n$. It is easy to see that φ_z fulfills the axioms (A1)-(A4) and is therefore a closure operator. Now, since $(x \setminus A)/y = x \setminus (A/y)$, it follows that:

$$\varphi_z(w \setminus A) = w \setminus \varphi_z(A)$$
 for all $w \in \Sigma^*$.

So φ_z is leftquotient-permutable and thus by Lemma 2.7 of [2] $\varphi_z = \operatorname{Anf}_{\mathscr{L}_z}$, where $\mathscr{L}_z = \{ A \mid \varepsilon \in \varphi_z(A) \} = \{ A \mid \text{there exists an } n \in N_0 \text{ such that } z^n \in A \}$. For $z = \varepsilon$ we obtain the discrete topology.

It is clear how this situation can be generalized. Let $M \subseteq \Sigma^*$ be a *submonoid* and $\varphi_M(A) := \bigcup_{m \in M} A/m$, then φ_M is the closure operator of an \mathcal{L} -topology with $\mathcal{L}_M = \{A \mid M \cap A \neq \emptyset\}$.

We present in short some examples of topologies which are not \mathcal{L} -topologies:

The closure operator $L \mapsto L \Sigma^*$; the closure operator $L \mapsto \Sigma^* L$; the (so called) left topology; let us recall that the right topology is an \mathcal{L} -topology (with closure operator Init).

THEOREM 2.1: The following 3 statements are equivalent:

- (i) $X_{\mathscr{L}}$ is a T_1 -space (i. e. each set $\{x\}$ is closed);
- (ii) $\partial(\mathcal{L})$ contains no set of cardinality 1;
- (iii) $\partial(\mathcal{L})$ contains no finite set.

Proof: The equivalence of (i) and (ii) has been already proved in [2]. Trivially, (iii) implies (ii). Now assume that (i) holds and $L \in \partial(\mathcal{L})$ be a finite set. Then, by (i), L is closed. But a set L in $\partial(\mathcal{L})$ can never be closed, because $\mathbb{E} \setminus L = L \in \partial(\mathcal{L}) \subseteq \mathcal{L}$ and $\mathbb{E} \notin L$.

3. INTERIOR OPERATORS AND \mathscr{L} -TOPOLOGIES

For a given topology, let I be the interior operator, defined by $I(A) = (\overline{A^c})^c$ (sometimes written as A^0).

THEOREM 3.1: The interior operator of an \mathcal{L} -topology is leftquotient-permutable; the corresponding family \mathcal{L}_I is given by:

$$\mathcal{L}_I = \{ A \mid A^c \notin \mathcal{L} \}.$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

Proof: Since $(x \setminus B)^c = x \setminus B^c$ and $Anf_{\mathscr{L}}(x \setminus B) = x \setminus Anf_{\mathscr{L}}(B)$, we have:

$$I(x \setminus A) = [\operatorname{Anf}_{\mathscr{L}}((x \setminus A)^{c})]^{c} = [\operatorname{Anf}_{\mathscr{L}}(x \setminus A^{c})]^{c} = [x \setminus \operatorname{Anf}_{\mathscr{L}}(A^{c})]^{c}$$

$$=x \setminus [A \operatorname{nf}_{\mathscr{L}}(A^c)]^c = x \setminus I(A).$$

By [2]; Lemma 2.7, $\mathcal{L}_I = \{ A \mid \varepsilon \in I(A) \}$. Now we have:

 $\varepsilon \in I(A) \iff \varepsilon \in [\operatorname{Anf}_{\mathscr{L}}(A^c)]^c$

$$\Leftrightarrow \quad \epsilon \notin \operatorname{Anf}_{\mathscr{L}}(A^c) \quad \Leftrightarrow \quad \epsilon \setminus A^c \notin \mathscr{L} \quad \Leftrightarrow \quad A^c \notin \mathscr{L},$$

thus $A \in \mathcal{L}_I \Leftrightarrow A^c \notin \mathcal{L}$.

Example: For $\mathcal{L} = \mathcal{P}_0(\Sigma^*)$, we have $\mathcal{L}_I = \{\Sigma^*\}$; $z \in I(A) \Leftrightarrow$ for all x holds $zx \in A$.

For $\mathcal{L} = \mathcal{U} \cup \{A \mid \varepsilon \in A\}$, we have $\mathcal{L}_I = \{A \mid A^c \text{ finite and } \varepsilon \in A\}$; $z \in I(A) \Leftrightarrow z \in A \text{ and for almost all } x \text{ holds } zx \in A.$

In [2] there are given 4 axioms (T1)-(T4) which characterize the \mathcal{L} 's leading to closure operators $[\alpha(\mathcal{L}) = \mathcal{L}]$ is assumed to hold].

A straightforward reformulation of this axioms in terms of \mathcal{L}_I yields:

Theorem 3.2: Let $\mathcal{L}_I \subseteq \{A \mid \varepsilon \in A\}$. Then \mathcal{L}_I leads to an interior operator iff (I1)-(I4) hold:

$$\Sigma^* \in \mathcal{L}_I,$$
 (I1)

$$A \in \mathcal{L}_I, \quad A \subseteq B \quad \Rightarrow \quad B \in \mathcal{L}_I,$$
 (I2)

$$A \in \mathcal{L}_I, \quad B \in \mathcal{L}_I \implies A \cap B \in \mathcal{L}_I,$$
 (I3)

$$A \in \mathcal{L}_I \iff \operatorname{Anf}_{\mathcal{L}_I}(A) \in \mathcal{L}_I,$$
 (I4)

REMARK: Similar as for \mathcal{L} in [2], it is possible to drop the condition $\mathcal{L}_I \subseteq \{A \mid \varepsilon \in A\}$ and to formulate other axioms. But this is not too meaningful and therefore omitted.

Remark: Since $\Sigma^* \in \mathcal{L}$, it follows $\emptyset \notin \mathcal{L}_I$. This together with (I1)-(I3) leads to the surprising fact that:

$$\mathcal{L}_I$$
 is a (proper) filter.

So the question arise what filters fulfill the axiom (I4). For the special case of a principal filter $\mathcal{L}(L) := \{A \mid A \supseteq L\}$ this can be answered:

Theorem 3.3: $\mathcal{L}(L)$ fulfills axiom (I4) iff \mathcal{L} is a monoid.

Proof: Let us reformulate axiom (I4) for this special situation: $A \in \mathcal{L}(L) \Leftrightarrow \operatorname{Anf}_{\mathcal{L}(L)}(A) \in \mathcal{L}(L)$ means:

$$L \subseteq A \Leftrightarrow L \subseteq \operatorname{Anf}_{\mathscr{L}(L)}(A) \Leftrightarrow L \subseteq \{z \mid L \subseteq z \setminus A\}.$$

Thus axiom (I4) is equivalent to:

$$L \subseteq A \iff [z \in L \Rightarrow L \subseteq z \setminus A].$$
 (*)

Setting A = L, (*) implies:

$$z \in L \implies L \subseteq z \setminus L.$$
 (**)

But a short reflection shows that (**) is also equivalent to (*) [and to (I4)!] Furthermore this means:

$$z \in L \implies [w \in L \Rightarrow w \in z \setminus L],$$

or:

$$z \in L$$
, $w \in L \implies zw \in L$.

Since $\mathcal{L}(L) \subseteq \{A \mid \varepsilon \in A\}$ we have $\varepsilon \in L$, and the proof is finished.

Remark: Each submonoid $M \subseteq \Sigma^*$ leads us to an \mathcal{L} -topology!

Let us recall the following fact from [2]: Let $X = (\Sigma^*, \mathfrak{D})$ be an \mathcal{L} -topology. Then:

$$\mathcal{L} = \mathcal{P}(\Sigma^*) - \{A \mid \text{there is an } 0 \in \mathfrak{D} \text{ such that } \epsilon \in 0 \text{ and } A \subseteq 0^c \};$$

this family \mathcal{L} is unique subject to the condition $\mathcal{L} = \alpha(\mathcal{L})$. Now let us compute \mathcal{L}_I :

$$A \in \mathcal{L}_I \iff A^c \notin \mathcal{L} \iff A^c \in \{B \mid \exists 0 \in \mathfrak{D} : \varepsilon \in 0 \text{ and } B \subseteq 0^c \}$$

 $\Leftrightarrow \exists 0 \in \mathfrak{D} : \varepsilon \in 0 \text{ and } A^c \subseteq 0^c \iff \exists 0 \in \mathfrak{D} : \varepsilon \in 0 \subseteq A;$
 $\mathcal{L}_I = \{A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in 0 \subseteq A \}$

and we find:

 \mathcal{L}_I is the filter of neighbourhoods of $\varepsilon!$

By [2]; Lemma 2.13, we know A open \Leftrightarrow for all $x \in A$ holds $(x \setminus A)^c \notin \mathcal{L}$, which now simply means:

for all
$$x \in A$$
 holds $x \setminus A \in \mathcal{L}_I$!

Altogether it seems that it is easier to work with \mathcal{L}_I instead of $\mathcal{L}!$

Now we are ready to formulate a general base representation theorem (generalizing [2]; Theorems 3.3 and 3.4):

THEOREM 3.4: Let $X = (\Sigma^*, \mathfrak{D})$ be an \mathcal{L} -topology. Then:

$$\mathfrak{B} = \{ x A | x \in \Sigma^*, A \in \mathcal{L}_I \} \text{ is a base for } \mathfrak{D}.$$

Proof: If 0 is open, then for all $x \in 0$ holds $x \setminus 0 \in \mathcal{L}_I$. Thus $x(x \setminus 0) \in \mathfrak{B}$ and $0 = \bigcup_{x \in 0} x(x \setminus 0)$.

4. SYSTEMS OF NEIGHBOURHOODS AND \mathscr{L} -TOPOLOGIES

A further method to generate a topology is to construct a system of neighbourhoods.

THEOREM 4.1: Let $X = (\Sigma^*, \mathfrak{D})$ be an \mathcal{L} -topology and let $\mathfrak{B}(x)$ be the family of neighbourhoods of x. Then:

$$\mathfrak{B}(x) = y \setminus \mathfrak{B}(yx).$$

Proof:

$$\mathfrak{B}(x) = \{A \mid \exists 0 \in \mathfrak{D} : x \in 0 \subseteq A\} = \{A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in x \setminus 0 \subseteq x \setminus A\};$$

$$y \setminus \mathfrak{B}(yx) = y \setminus \{A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in yx \setminus 0 \subseteq yx \setminus A\}$$

$$= y \setminus \{A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in x \setminus (y \setminus 0) \subseteq x \setminus (y \setminus A)\}$$

$$= \{y \setminus A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in x \setminus (y \setminus 0) \subseteq x \setminus (y \setminus A)\}$$

$$= \{A \mid \exists 0 \in \mathfrak{D} : \varepsilon \in x \setminus 0 \subseteq x \setminus A\}.$$

Remark: The property $\mathfrak{B}(x) = y \setminus \mathfrak{B}(yx)$ implies $y \mathfrak{B}(x) \subseteq \mathfrak{B}(yx)$.

We can prove also a converse of Theorem 4.1.

THEOREM 4.2: Assume that there is a system of neighbourhoods $\{\mathfrak{B}(x)\}$ satisfying:

$$\mathfrak{B}(x) = y \setminus \mathfrak{B}(yx).$$

Then the topology is even an \mathcal{L} -topology.

Proof: By [2]; Theorem 2.16 it is sufficient to show that the system of open sets \mathfrak{D} is *left stable*.

Let 0 be open, i. e. 0 is neighbourhood of all its points, i. e.:

$$x \in 0 \implies 0 \in \mathfrak{B}(x).$$

To show: $z \setminus 0$ is open. Let $x \in z \setminus 0$, i. e. $zx \in 0$, i. e. $0 \in \mathfrak{B}(zx)$. By the condition: $z \setminus 0 \in z \setminus \mathfrak{B}(zx) = \mathfrak{B}(x)$.

Furthermore we have to show: z 0 is open. Let $x \in z 0$, i. e. x = zy and $y \in 0$, i. e. $0 \in \mathfrak{B}(y)$. From the last remark: $z 0 \in z \mathfrak{B}(y) \subseteq \mathfrak{B}(zy) = \mathfrak{B}(x)$.

vol. 17, n° 3, 1983

Remark: We know already that \mathcal{L}_I is simply $\mathfrak{B}(\varepsilon)$. So we have for all systems of neighbourhoods by means of the remark after Theorem 4.1:

$$\mathfrak{B}(x) \supseteq x \mathfrak{B}(\varepsilon) = x \mathcal{L}_I.$$

REFERENCES

- 1. R. Engelking, Outline of General Topology, North-Holland, Amsterdam, 1968.
- 2. H. Prodinger, Topologies on Free Monoids Induced by Closure Operators of a Special Type, R.A.I.R.O., Informatique théorique, Vol. 14, 1980, pp. 225-237.