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Abstract

In this research note we investigate the number of moves and the displacement of
particular elements along the execution of the well-known quicksort algorithm. This
type of analysis is useful if the costs of a data move were dependent on the source
and target locations, and possibly the moved element itself.

From the mathematical point of view, the analysis of these quantities turns out
to be related to the analysis of quickselect, a selection algorithm which is a variant
of quicksort that �nds the i-th smallest element of n given elements, without sorting
them. Our results constitute thus a novel application of M. Kuba's machinery (Infor.
Proc. Lett. 99(5):181{186, 2006) for the solution of general quickselect recurrences.

1 Introduction

The main goal of this short research note is to present a detailed analysis of the
moves of particular elements along the execution of the well-known quicksort
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algorithm [2]. This kind of analysis is useful whenever we encounter a situation
where there is some associated cost C(i; j; `) to move element i from position
j to position `.

We will consider here two parameters of interest: 1) the number of moves
Mn;i of element i when we sort an array of size n, and 2) the (accumulated)
displacement Dn;i of element i. The �rst random variable corresponds to the
situation where C(i; j; `) = 1 whenever j 6= ` and C(i; j; `) = 0 otherwise. For
the second random variable, we take into account the number of positions that
the element travels each time it is moved; thus, C(i; j; `) = jj� `j. Section 2 is
devoted to the analysis of Mn;i and Section 3 to the analysis of Dn;i. Although
the same techniques could be used to investigate the variance and higher order
moments, we will not do so here, because the computations involved are too
cumbersome.

We use in this paper fairly standard tools in the analysis of algorithms such
as probability generating functions (see, for instance, [7]). As we will see in
later sections, the analysis of data moves in quicksort involves the so called
quickselect recurrence. In its general standard form it reads

fn;i = an;i +
1

n

X
1�k<i

fn�k;i�k +
1

n

X
i<k�n

fk�1;i; 1 � i � n; (1)

for some given toll function an;i. As its name suggests, this type of recurrence
appears in the analysis of quickselect [1], a variant of quicksort where we only
need to select the i-th smallest element out of n rather than sorting the whole
array.

In a recent paper, M. Kuba has provided the general solution to the recurrence
above; we reproduce here his main result for the reader's convenience, as we
shall use it frequently in the sequel 3 .

Theorem 1 (Kuba [5]) The value fn;i de�ned by (1) with arbitrary �xed
values an;i, 1 � i � n, is given by

fn;i = a1;1 +
nX

k=n+2�j

A(k; k � n+ j) +
n+1�jX
k=2

kak;1 � (k � 1)ak�1;1
k

;

3 Some of Kuba's original formulas read incorrectly due to improper formatting;
see the author's homepage for the corrected versions [4] given here in Theorem 1.
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where A(n; i) is given by

A(n; i) =
nX

k=j+1

kak;i � (k � 1)ak�1;i�1 � (k � 1)ak�1;i + (k � 2)ak�2;i�1
k

+
iai;i � (i� 1)ai�1;i�1

i
:

We review now how quicksort works, and in particular, its partitioning proce-
dure. Actually, there are several di�erent partitioning schemes, each one with
its virtues and drawbacks. Each one would require an independent analysis, as
they essentially di�er in the way they move the data to reorganize the array
around the pivot. We will concentrate in the standard scheme [6], for which we
analyze the number of moves (Section 2) and displacement (Section 3); we also
consider the behavior of the number of moves for a symmetric variant of the
partitioning scheme (Section 4) to exemplify how we could analyse di�erent
partitioning schemes using the same basic set of tools.

Quicksort sorts the subarray A[l::u] by reorganizing its contents of around a
pivot element p = A[l]; upon exit of the partitioning procedure A[k] = p,
all elements in A[l::k � 1] are smaller than or equal to p and all elements in
A[k+1::u] are greater than or equal to p. Hence, the pivot has been brought to
its correct position, and the algorithms recursively calls itself on the subarrays
A[l::k�1] and A[k+1::u] to the left and to the right of the pivot, respectively
(see Algorithm 1).

Algorithm 1 The quicksort algorithm.

procedure Quicksort(A, l, u)
if l � u then return . Nothing needs to be done
end if
. p = A[l]
Partition(A; l; u; k)

. 8i : l � i < k : A[i] � p, A[k] = p, and 8i : k < i � u : p � A[i]
Quicksort(A; l; k � 1)
Quicksort(A; k + 1; u)

end procedure

The partition procedure scans the current subarray from both ends. The pivot
element p is located at A[l]. At any intermediate stage A[l+1::i� 1] contains
elements � p and A[j + 1::u] contains elements � p. The two internal loops
scan the subarray from left to right and from right to left until some A[i] > p
and A[j] < p have been found (or the scanning has �nished). If elements
A[i] > p and A[j] < p have been found then they are swapped and we resume
the scanning of the subarray (see Algorithm 2).
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Algorithm 2 Partition A[l::u] around the pivot at A[l] and return the �nal
position k of the pivot.

procedure Partition(A, l, u, k)
p A[l]
i l; j  u+ 1
loop

repeat i i+ 1
until A[i] � p
repeat j  j � 1
until A[j] � p
if i � j then

break
end if
A[i]$ A[j]

end loop
A[l]$ A[j]
k  j

end procedure

2 The number of moves

For the analysis below and the rest of the paper, we will assume w.l.o.g. that
the array to be sorted contains a random permutation of f1; : : : ; ng. Assume
that the pivot is the k-th element. Consider now some element i < k. If
i belongs to A[2::k � 1] prior to the partitioning it will not move. On the
contrary, if i were initially located at any position of A[k::n] then it will be
moved to stay to the left of the pivot. Thus, with probability (k � 2)=(n� 1)
the element doesn't move and with probability (n+ 1� k)=(n� 1) it does.

Similarly, if i > k then it doesn't move if it were initially located within
A[k + 1::n] |this happens with probability (n � k)=(n � 1)|, whereas it
will be moved whenever it were located in A[2::k], hence with probability
(k � 1)=(n� 1).

Finally, if i = k then it will be moved once to its �nal position; we count
as a move the degenerate case where i = 1, since the partitioning algorithm
performs a redundant exchange in this case.

Once the (eventual) move of element i has been taken into account for the cur-
rent partitioning stage, we keep track of the subsequent moves of the element
i while sorting the left subarray of size k�1 if i < k, or while sorting the right
subarray of size n� k if i > k (but we have to track down the whereabouts of
the element i� k there).

From the discussion above, the following theorem is immediate.
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Theorem 2 The probability generating function Mn;i(v) of the number of
moves of element i in a random permutation of f1; 2; : : : ; ng, satis�es the
recursion

Mn;i(v) =
1

n

X
1�k<i

 
k � 1

n� 1
v +

n� k

n� 1

!
Mn�k;i�k(v)

+
1

n

X
i<k�n

 
k � 2

n� 1
+
n� k + 1

n� 1
v

!
Mk�1;i(v) +

v

n

for n � 2 and 1 � i � n; M1;1(v) = v.

Corollary 3 The expected number of moves �n;i = M 0
n;i(1) satis�es

�n;i =
1

n

X
1�k<i

�n�k;i�k +
1

n

X
i<k�n

�k�1;i

+
1

n
+

(i� 1)(i� 2)

2n(n� 1)
+

(n+ 1� i)(n� i)

2n(n� 1)
; n > 1; 1 � i � n;

with �1;1 = 1.

To solve the recurrence above we use Theorem 1. Here, an;i =
1
n
+ (i�1)(i�2)

2n(n�1)
+

(n+1�i)(n�i)
2n(n�1)

:

Theorem 4 For all n > 1, 1 � i � n,

�n;i =
1

3
Hn +

1

6
Hi +

1

6
Hn+1�i +

1

6
+

1

3i
� (i� 1)2

3n
+

(i� 1)(i� 2)

3(n� 1)

+
1

12
[[i = 1]]� 1

12
[[i = n]];

where Hn =
P

1�k�n
1
k
is the n-th harmonic number and [[P ]] = 1 if P is true

and [[P ]] = 0 otherwise.

A few additional computations with the formula above yield simple asymptotic
estimates for interesting special cases.

Corollary 5 For �xed i � 1, as n!1,

�n;i =
1

2
lnn+

1

6
Hi +




2
+

1

3i
+

1

6
+O(n�1);

where 
 = 0:577215 : : : is Euler's gamma constant. Furthermore, if i > 1,
�n;n+1�i = �n;i � 1

3i
+O(n�1).

For i = �n+ o(n), 0 < � < 1, we have

�n;i =
2

3
lnn+

1

6
+

1

6
ln� +

1

6
ln(1� �)� �(1� �)

3
+

2

3

 +O(n�1):
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The global minimum of �n;i occurs at i = n. The maximum of �n;��n occurs
close to the median (� = 1=2), actually at

�� =
1

2
� 2

n
� 39

n2
� 582

n3
� 8604

n4
� 121168

n5
+O(n�6);

with �n;��n =
2
3
lnn+ 1

12
� 1

3
ln 2 + 2

3

 +O(n�1).

Another quantity of interest is the cumulated number of moves. By linearity,
its expected value is the sum of the �n;i's.

Corollary 6 For n � 2, the total number of moves is given by

�n =
nX

i=1

�n;i =
2

3
(n+ 1)Hn � 4n+ 1

18
:

As indicated already in the Introduction, we refrain from going further, since
the variance with a simpler toll function has proved to be quite formidable [3].

3 Displacement

Now we measure the \distances" that the individuals travel: instead of just
counting how many times some element i has moved," we record the (cumula-
tive) distance of where i was and where it is after each iteration. We do here a
case analysis as in the previous section. Suppose i > k. Then it will be moved
if it were at some source position j between 2 and k; it will land at some
target position ` between k + 1 and n. The displacement at that particular
stage is hence `� j. Now, the probability that i has to move is (k�1)=(n�k).
Conditioned on the event that i has to move, any source position j between 2
and k is equally likely, i.e., has probability 1=(k� 1). Analogously, given that
i is kicked out from its source position j, any target position ` between k + 1
and n has identical probability 1=(n � k). So when we consider the PGF for
Dn;i we will have a contribution of the form

0
@ kX

j=2

nX
`=k+1

v`�j

(n� 1)(n� k)

!
+
n� k

n� 1

1
ADn�k;i�k(v);

for each possible pivot k < i. The other cases, when i < k and when i = k
are dealt with similarly; in particular, if i = k then the element has to be
moved from the �rst position (the original position of the pivot) to position i.
Summing up everything, we have the following theorem.

Theorem 7 The probability generating function Dn;i(v) of the displacement
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of element i in a random permutation of f1; 2; : : : ; ng, satis�es the recursion

Dn;i(v) =
1

n

X
1�k<i

 
kX

j=2

nX
`=k+1

v`�j

(n� 1)(n� k)
+
n� k

n� 1

!
Dn�k;i�k(v)

+
1

n

X
i<k�n

 
k � 2

n� 1
+

k�1X
j=1

nX
`=k

v`�j

(n� 1)(k � 1)

!
Dk�1;i(v) +

vi�1

n

for n � 2 and 1 � i � n; D1;1(v) = 1.

Then we follow the path already traced when analyzing the number of moves:
1) obtain a recursion for expected values by di�erentiating the recursion for
PGFs and setting v = 1; 2) solve the recursion using the general result by
Kuba; 3) analyze some special cases of interest and the total displacement
(the sum of all individual displacements).

Corollary 8 The expected displacement �n;i = D0
n;i(1) satis�es

�n;i =
1

n

X
1�k<i

�n�k;i�k+
1

n

X
i<k�n

�k�1;i+
(i� 1)(i� 2)

4n
+
(n� i)(n+ 1� i)

4(n� 1)
+
i� 1

n

with �1;1 = 0.

Theorem 9 For all n > 1 and 1 � i � n,

�n;i =
n

2
+

1

12
Hn � 1

12
Hi�1 � 1

3
Hn+1�i +

5

24
� (i� 1)2

12n
+

(i� 1)(i� 2)

12(n� 1)

+
1

6
[[i = 1]] +

1

8
[[i = n]]:

Corollary 10 For �xed i � 1, as n!1,

�n;i =
n

2
� 1

4
lnn+O(1);

�n;n+1�i =
n

2
+O(1):

For i = �n+ o(n), 0 < � < 1,

�n;i =
n

2
� 1

3
lnn� 1

12
ln�� 1

3
ln(1� �)� �

12
+
�2

12
+

5

24
+O(n�1):

The maximum of �i;n occurs at i = n; there �n;n = n=2. The minimum of �n;�n
occurs at

�� =
5

4
�
p
17

4
+
�
5

8
+

5

136

p
17
�
1

n
+
�
� 33

256
+

821

221952

p
17
�
1

n2

+
�
981

4096
+

4864631

60370944

p
17
�
1

n3
+O(n�4) = 0:219223594 : : :+O(n�1);
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with

�n;��n =
n

2
�1
3
lnn� 1

12
ln
�
5

4
�
p
17

4

�
�1
3
ln
�
�1
4
+

p
17

4

�
+
31

96
�
p
17

32
�

3
+O(n�1):

Corollary 11 For n � 2, the total displacement is given by

�n =
nX

i=1

�n;i =
n(9n+ 11)

18
� 1

3
(n+ 1)Hn +

5

18
:

Remark. The average displacement of element i in a random permutation
is

1

n

nX
k=1

ji� kj = i(i� 1)

2n
+

(n+ 1� i)(n� i)

2n
:

This is for i = �n+ o(n) asymptotic to n
2
(�2 + (1� �)2).

4 Symmetric partitioning

To break the asymmetry of taking the �rst element as pivot, we choose a
random location and take the element there as the pivot. Pivot k is in location
` and the particular element i in location j. If we repeat the case analysis of
Section 2, we arrive at

Mn;i(v) =
X

1�k<i

2
4 X

k<j�n

1

n(n� 1)
+

X
1�j<k

v

n(n� 1)

3
5Mn�k;i�k(v)

+
X

i<k�n

2
4 X

k<j�n

v

n(n� 1)
+

X
1�j<k

1

n(n� 1)

3
5Mk�1;i(v) +

v

n
;

which simpli�es to

Mn;i(v) =
1

n

X
1�k<i

 
k � 1

n� 1
v +

n� k

n� 1

!
Mn�k;i�k(v)

+
1

n

X
i<k�n

 
k � 1

n� 1
+
n� k

n� 1
v

!
Mk�1;i(v) +

v

n
:

Hence, we get again the quickselect-type recurrence for �n;i = M 0
n;i(1), but

this time the toll function is

an;i =
1

2
+

1

n� 1
� i(n+ 1� i)

n(n� 1)
:
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Following the same steps as in previous sections we arrive at the solution

�n;i =
1

3
Hn +

1

6
Hi +

1

6
Hn+1�i � 1

6
� 1

6n
+

1

3

1

n� 1
+

1

6

�
1

i
+

1

n+ 1� i

�

� 1

3

i(n+ 1� i)

n(n� 1)
+

1

12
[[i = 1]] +

1

12
[[i = n]];

which is clearly symmetric: �n;i = �n;n+1�i. The di�erence between the num-
ber of moves for this symmetric partitioning, and that for the standard par-
titioning in Section 2 is asymptotically negligible, actually it is about 1

3
.

Hence, we have the same asymptotic estimates for this �n;i as we had in
Section 2. Namely, for �xed i � 1, �n;i =

1
2
lnn+O(1), and for i = �n+ o(n),

�n;i =
2
3
lnn+O(1).

Last but not least, the total number of moves follows by simple summation:

�n =
nX

i=1

�n;i =
2

3
(n+ 1)Hn � 5n� 1

9
:

which is basically the total number of moves in the standard scheme minus
n=3.

Also, if we consider displacements with this symmetric variant of partitioning,
we have for the expected value the quickselect recurrence with toll function

an;i =
(i� 1)2

4(n� 1)
+

(n� i)2

4(n� 1)
+

1

2n
� (i� 1)(n� i)

2n(n� 1)
; n > 1; 1 � i � n;

and a1;1 = 0.

Using Theorem 1 we get

�n;i =
n

2
+

1

3
Hn � 5

6
Hi � 5

6
Hn+1�i + 1 +

1

6

�
1

i
+

1

n+ 1� i

�

� 1

3

i(n+ 1� i)

n(n� 1)
+

1

3

1

n� 1
� 1

6n
� 1

12
[[i = 1]]� 1

12
[[i = n]]:

Again, this formula is obviously symmetric (�n;i = �n;n+1�i), and attains its
global minimum at i = bn=2c.

When i is �xed and i > 1 then

�n;i = �n;n+1�i =
n

2
� 1

2
lnn+ 1� 1

2

 � 5

6
Hi +O(n�1);

and for i = �n+ o(n), 0 < � < 1,

�n;i =
n

2
� 4

3
lnn+ 1� 4

3

 � 1

3
�(� + 1)� 5

6
ln�� 5

6
ln(1� �) +O(n�1):
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The average displacement under this partitioning scheme is always smaller
than for the non-symmetric variant, with the di�erence ranging from 1

4
lnn+

O(1) when i is �xed to lnn+O(1) when i = �n+ o(n) for some �, 0 < � < 1.

Summing up for all i we get the average total displacement, namely,

�n =
X

1�i�n

�n;i =
n(9n+ 47)

18
� 4

3
(n+ 1)Hn � 1

18
;

which improves the average total displacement of the standard partition by
n lnn+O(n).
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