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O R D E R E D FIBONACCI PARTITIONS 

BY 

H E L M U T PRODINGER ( 1 ) 

ABSTRACT. Ordered partitions are enumerated by Fn = 
£ k fc! S(n, k) where S(n, k) is the Stirling number of the second 
kind. We give some comments on several papers dealing with or­
dered partitions and turn then to ordered Fibonacci partitions of 
{ 1 , . . . , n}: If d is a fixed integer, the sets A appearing in the 
partition have to fulfill i,jeA, i=£ j ^>\i-j\>d. The number of 
ordered Fibonacci partitions is determined. 

1. The polynomials Fn(x) = Xk k\ S(n, k)xk and the numbers F n :=F n ( l ) 
have appeared in the literature for several times (S(n, k) are Stirling numbers 
of the second kind [2]): R. D. James [5] dealt with Fn considering the number 
of ordered nontrivial factorizations of a squarefree integer. In O. A. Gross [3] Fn 

appears as the total number of distinct rational preferential arrangements; this 
connection was recently rediscovered by J. P. Bartholemy [1]. The Bell 
numbers Bn [6] are counting the number of ways to partition the set { 1 , . . . , n}. 
Now S(n, k) is the number of partitions of { 1 , . . . , n} into exactly k blocks. 
Thus Bn =Yk S(n, fc). This shows a very close relationship between Bn and Fn. 
Fn counts each partition with k blocks with the factor k\ which refers to the 
number of ways to permute the blocks. So Fn can be interpreted as the total 
number of ordered partitions of a set with n elements (compare S. M. Tanny [9]). 

In this note we first give some comments on the previous papers dealing with 
Fn and Fn(x) and turn then to the case of ordered d-Fibonacci partitions of a set 
with n elements (cf. [7], [8]): We allow only those ordered paritions where the 
blocks A ç { 1 , . . . , n} satisfy i, / e A, i^ j =>|i - ; | > d. Let F(

n
d) be the number 

of those ordered partitions. Our main result is 

F(
B
d> = 2 1 - d I 1 | S (d ,d -k ) |F„_ k 

k = 0 

where \s(d, l)\ are signless Stirling numbers of the first kind. 
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2. It was observed [1], [3], [5] that 

(1) G(z)=l Fn- = - ^ . 
n^0 n\ 2-ez 

From this the asymptotic behaviour of Fn was derived [1], [3], [5]: 

n ! / 1 \ n + 1 

(2) F--f (iiî) • ( " ^ 
Using the method of subtracted singularities (Henrici [4]), a stronger result is 
most easily derived: Regarding the zeros of 2 — ez, we find that G(z) has 
singularities at zk = log2 + 2/c7n, keZ. The singularities in question are just 
simple poles; the local expansions about those poles are 

(3) G(z) = - ^ - + 0 ( l ) , (z^>zk). 
zk-z 

The knowledge of the local behaviour about the singularities gives enough 
information to grind out an asymptotic formula for Fn with an arbitrary small 
error term (by choosing meN). We find 

(4) ~ = \ I z'k
(n+1)+0(z~m

n), (n->«>). 
n- Z \k\<m 

S. M. Tanny [9] gives for x^-1 the following representation of Fn(x) as an 
infinite series: 

<5) ' F-w-rb.l(îfî)v 

As pointed out in [9], this formula is only meaningful for |x/(l + x ) | < l , i.e. 
R e x > - l / 2 . 

We give now a similar formula which is valid for |(JC + 1 ) / X | < 1 , i.e. R e x < 
-1 /2 : 

Let A(n,k) be the Eulerian numbers ([2]) and An(u) '--Y.kA(n, k)uk. A 
formula of Frobenius ([2]) gives 

n 

(6) An(u) = uY, k\S(n,k)(u-l)n-\ 
k = \ 

from which we conclude that 

(7) Fn(x) = ^—An{^ 
x + 1 \ x 

Now it is well known that (e.g. see [2]) 
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which gives after simplification 

(9) ™J-TF * (—)V" 
1 + ^ k>() ^ X ' 

We remark that from (7) and the definition of An(u) formula (16) of [9] is most 
easily derived. 

We give yet another formula for Fn. For this, let [zn]f denote the coefficient 
of zn in the power series /. 

(10) 

Now 

(ID 

and thus (n 

n 

k=0 

s i ) 

-Dl 
\lJ \ - Z k > 0 \ 1/ 

\-z \\ \d(-z)/ 1 + z 

1 1 V 
- r ~ n i t ~v _ u ]i-z«! ( ^a+zr 1 

- r - i ("2) ' u J ( i - 2 ) a + 2 r i -

fc!S(n,k)=I r(-l)k-'(k) 

Fn= J k!S(n,k) = X (-iVi" £ (-l)k(k) 
k=0 i>0 k=0 \ * ' 

= I in[zn] z 
( l - z ) ( l + z) i + 1 

1 v / z 
= M 7 7 - + T - T S , ( l - z ) ( l + z) i t ' ( )M + z/ 

1 - 2 M + 2 

3. In [7], [8] the present writer defined a d-Fibonacci set A ç {1, 2 , . . . , n} to 
be a set with the property 

(13) i, je A, i^j^>\i-j\>d. 

The numbers C(
n
d) of partitions of { 1 , . . . , n} where all sets are d-Fibonacci 

sets were determined; it turned out that 

(14) <?„"> = B n + 1 _ d , 
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where Bm is a Bell number. Within this context, it is natural to consider F^d), 
the number of ordered partitions of { 1 , . . . , n} into d-Fibonacci sets. These 
numbers are most easily determined by use of a particularly elegant technique 
developed by Rota [6]. 

Let us recall from [7] that the number of functions / : { 1 , . . . , rc}-> U (a finite 
set with u elements) such that 

(15) \{f(i),f(i + l),...,f(i + d-l)}\ = d for all i 

is given by 

(i6) ( M u u - d + i r - d , 

where (u)d:= u(u-l) • • • (u-d + l). 
The functions fulfilling (15) are partitioned with respect to their kernels: 

(The kernel of / is the partition of { 1 , . . . , n} defined by saying that a and b are 
in the same block iff f(a) = f(b).) Let N(TT) denote the number of blocks of the 
partition IT. Then 

(17) (M)N(w) = (M) d . 1(u-d + i r + 1 - d . 

The application of the linear functional L defined by (u)k -> 1 for all k to (17) 
gives C{„\ since each summand gives a contribution of 1. To find F^d), we have 
to use the linear functional L defined by (u)k —> k\, because there are k\ ways 
to "order" the k blocks of the partition, so that the contribution of a partition 
with N(ir) blocks to the application of L to the left-handside of (17) is N(TT)\. 

Tanny [9] has proved that for any polynomial p 

(18) L(p(u)) = p(0) + L(Ap(u)) 

with Ap(u) = p(u + l ) -p(w) . Repeated application of (18) gives: 
Let 5 be the smallest natural number such that p(s) ^ 0 holds (for p ^ 0); then 

(19) 2sLp(u) = Lp(u + s). 

Now we have 

(20) F^ = L(u)d^(u-d + lT+1-d 

and thus using (19) with p(u) = (u)d_1 and s = d - 1 

(21) 2d-1F(
n

d) = L(u + d - l)d„xu
n+1-d. 

In Comtet [2] we find essentially that 

d-\ 

(22) (u + d - l)d_! = I |s(d, k +1)| u\ 
k=0 

where the \s(d, l)\ are signless Stirling numbers of the first kind. From this we 
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infer 

d-\ 

21~dL X \s(d, k + l)| un+1~d+k 

d-\ 

21-" £ |s(d,d-fc)|F„_fc. 
k=0 

An easy consequence of (2) and (23) is 

(24) F ^ - 2 1 - ^ , (n-^oc). 
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