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Abstract - Zusammenfassung

A Result in Order Statistics Related to Probabilistic Counting . Considering geometrically distributed
random variables the d-maximum of these events is investigated, i .e . the d-th largest element (with
repetitions allowed) . The quantitative behaviour of expectation and variance is analyzed thoroughly . In
particular the asymptotics of the variance for d getting large is established by means of nontrivial
techniques from combinatorial analysis and complex variable theory . These results apply to probabilistic
counting algorithms, where the cardinalities of large sets are estimated .
AMS Subject Classification : 68R05
Key words : Order statistics, asymptotic analysis

Ein Ergebnis der Ordnungsstatistik mit Anwendung auf probabilistischs Ziihlen . Bezuglich geometrisch
verteilter zuralliger Veranderlicher wird das d-Maximum solcher Ereignisse studiert, also das d-grol3te
Element, wobei Wiederholungen erlaubt sind. Das quantitative Verhalten von Erwartungswert and
Varianz wird ausgiebig analysiert. Insbesondere wird das Verhalten der Varianz far groBe d mit Hilfe
nichttrivialer Techniken aus Kombinatorik and komplexer Analysis untersucht . Diese Resultate haben
Anwendungen bei probabilistischen Zahlalgorithmen, die zur Schatzung der Kardinalitaten groLier
Mengen verwendet werden .

1. Introduction

Szpankowski and Rego [14] have considered n independently and identically
distributed geometric random variables X,,..., X,, . Their parameter of interest was
the maximum, max{X1, . . .,X„} .

The aim of this paper is threefold :

(1) A slightly more direct approach will be used to this problem ; Szpankowski and
Rego set up recurrences for the expectaton and the second moment. These
recurrences are solved by generating function techniques . This is somewhat
superfluous as we can directly compute the probabilities for these max-statistics .

(2) In the main part the following generalization will be considered : Let d > I be
an integer. We consider the d-maximum, i .e. the d-th largest element (with
repetitions allowed) . (d = 1 is the maximum .) To be more precise, if there are
numbers x1, . . ., x„ and we sort them in descending order as yt > . . . >_ y,,, then
the d-maximum maid{xl	x„} is yd . It will turn out, that, by choosing d to
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(3)

be large, the variance can be made quite small . We will give quantitative
asymptotic results . This is a nontrivial task since the expectation contains
periodic fluctuations which give an essential contribution to the variance .
An important observation is the application of these results to probabilistic
counting, [2] . Without going into details, n data values produce an infinite 0,
1-string with only finitely many l's, looking like

1 1 1 . . . 1 0 a a a . . .a1000 . . . ,

where a e {0, 11 . The region between the first 0 and the last I is called the fringe .
The parameter R n to estimate log, n, used by Flajolet and Martin, is the index
of the first 0. This parameter may by analyzed according to very delicate
observations, compare [2], [9] and [11] . The index of the last I is just
Szpankowski and Rego's parameter minus I (assuming equal probabilities for
0 and 1). (One has to subtract 1 since the indices in the string start with 0 and
the geometric random variable takes only values >- 1 .) It is less accurate than
the original one used by Flajolet and Martin, but with the parameter d, e.g. for
d = 3, we can beat R n with respect to the variance . However, in [2] there are
also other variations reported in order to make the variance small. Nevertheless
we mention that even an arbitrarily small variance cannot compensate the effect
of approximating a discrete quantity by a continuous one . Furthermore it
should be stated explicitely that the applicability is somehow limited in the
following sense. The original algorithm of Flajolet and Martin can be used to
compute the cardinality of a multiset. This is especially useful in database
applications when the number of different elements in the union of several
databases is of interest. For d >- 2 this does not work well, because the d-

maximum is sensitive (though not much) to multiple appearences of the same
element .

2. Expectation and Variance

Let X be a random variable distributed according to the geometric distribution
with parameter p ; as usual, set q = 1 - p. It is convenient to define Q = q-I and
L = log Q. Then, Prob {X < k} = I - q k and Prob {X > k} = q k . Therefore

Prob{maid {X I , . . .,Xn } < k}
d-1

= I.=0
d~- '1

A=O

Prob{). elements are > k and the other are < k}

(n)g k 'I (1 - qk)n-x
\\;

Let E'„d ~ be the expectation of the d-maximum. We have

E;,d ' _ Y Prob{mai d {X 1 , . . .,Xn } > k}
kZ0

d-1

k~
1 -

	

(fl) qkA(l

	

S- qk)n-~~
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We expand (1 - q k )" - " according to the binomial theorem, interchange the sums
and combine the "1" with the instance) = 0 to get

E(d)
-- n

	

n
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e-t (n) ncc-----~~A n

	

)

	

l

	

1
n
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(

	

)
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L

	

(

	

) 1 - Z+t
= t i

	

1- q

	

A=I

	

+=o

	

q

Observe that the first sum is just E(t). Alternating sums of the type

k>
(k)(-1)kf(k)

are most easily evaluated asymptotically by Rice's method, compare [5] :

Lemma 1 . Let ( be a curve surrounding the points s, s + 1, . . . , n (s E N) in the complex
plane and let f(z) be analytic inside

	

Then

ks ()(_k

	

1)kf(k) _ - 2ni
J
.[n;z]f(z)dz,

where

[n, z] =	
(-1)`n!

z(z - 1) . . . (z - n)

This lemma is useful, because the integral may be asymptotically evaluated by
collecting the residues of [n;'z] f(z) with Rz < s. Consider the instance of
Szpankowksi and Rego,

E;, t l

	

(n)(-1)i 1	1 Q = ~t (?;)_ ( 1Y(i)

with

f(z) = - 1

1-Q -z •

At z = 0, the local expansion looks like

1

	

Lz
f(z) - LL 1 + 2

The quantity [n; z] has also a pole at z = 0;

[n; z] - - 1 (1 + zHn )
z

with a harmonic number Hn = 1 +
2
+

	

+ n . The residue is'

[z-']
1 ( Lz)1

	

I Hn
] Lz 1+2 Z(1+ZHn)= 2 + L .

Observe that Hn log n + y.

[z"] f(z) denotes the coefficient of z" in the (Laurent-) series f(z).



18 P. Kirschenhofer and H . Prodinger

There are also simple poles at z = X k
= 2k7ri

L
	 , k e 7L\{0} with residue

[n;
k] - - I T(-Xk)nXk

	

(n -+ oo) .

Collecting all residues we obtain again the result from Szpankowski and Rego :

Theorem 2 .

E;,'' logo n + L + 2 + P, (logQ n)

where P, (x) is a continuous periodic function of period 1, mean zero, small amplitude
and Fourier expansion

P1(x) _ - 1

	

r( - Xk)e
2nikz

L kso

To perform the generalization to the general case we only have to consider the extra
terms

d-1

():7 2) .1i 1n

-A

C
n

	

1
Y

	

()- Q -A-i
=i

	

=o

To this end, let N := n - 2 and consider

i-o
( )

with

f(z)

Now there is only a simple pole at z = -J. . We find immediately that

Res [N ; z]	
1

	

1 N!(7. - 1)!
:=_z

	

1 -
Q-x

	

L (N + J)!

Therefore the correction is (apart from the fluctuations) asymptotic to

- I d-1

(

n) (n - ~)!(1 - 1)!

	

1
L x=, a

	

n!

	

L

Hence we have

Theorem 3. As n oo, we have

E;,d1 - logo n + L + 2 - LHd -, + P, (logo n)



Y (2k+1)[1-
k>- 0

Let us start with the main term
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where P 1 (x) = P l , d(x) is a continuous periodic function of period 1, mean zero, small
amplitude and Fourier expansion

P1(x) = - 1 Y- e2nikxF( - Xk) C 1 + d1	 Xk)x) .

L k#o

	

A=I

	

%t

	

J1

With regard to the variance we start with the second moment, which is easily
computed as

I (;n)qkA(l - qk)n-tl

n

	

1+ Q-i

	

d-t n n-A n- ;

	

1+ Q-x-i

(i/

	

Q-iT2 - 1 2)
i~

	

i ~(-1)` (1 -	Q-x-i ) 2

1+Q ---
f(z) = - (1 - Q--)2 .

At z = 0 there is altogether a triple pole ; we have

2

	

Lz L2z 2
f(z) - L2z2 1 + 2 + 6

Also,

[n ; z] "- - 1 1 + zHn + z2 Hn +H~2)

z

	

2

with H,(,2) = Zk= l 2 , a harmonic number of order 2 and the residue of [n ; z] f(z) is

Hn

	

H,t,21

	

H,,

	

I

	

2

	

2y log, n

	

y2

	

n2

	

y

	

1
L2+ L 2 + L + 3 ^ logQn+

L + L2+6+logQn+L+3 .

For the correction, consider (with N = n - 2)

~~
(N)(-

with

1 + Q-x -%

f(z) _
( 1 _ QA-z ) 2
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At z = -i there is a double pole; with w = i + z --> 0 we have

	 2
2(

	

Lw)
•.I(z)

L w
1 + 2

Furthermore,

[N
;z]- N!(~- 1)! [1+w(H

	

H •
(N + i)!

	

N+~ - e-i)],

and the residue of [N; z] f(z) at z = -i is
N!(i. - 1)! 2 L
(N+i)! L2 2 +H"+.Z-H _

1

We can sum this up as follows :
d-1 (n'\(n -

	

1)! 2 L

	

l
- =i 1

	

n!

	

L2 (2 + H„ - H.1-1J

~(L+LZH„ - LZHz-1

1

	

2

	

HI-1

	

Hd2'1

- -L Hd-1 -
L2

H-Hd - 1 + L2 - L2

Altogether we find for the second moment (apart from the fluctuations) the
asymptotic equivalent

logo n 2y logo n + Y2 +Y22 + logo n + y + 1 - 1
Hd _1

- 2Hd -1 1ogQ n
L

	

L 6L

	

L 3 L

	

L

2Hd-1

	

Hd_1 Hd2) 1
- L2 Y + L2 - L2

Now for the variance we must subtract the square of the expectation . There are
many terms cancelling, and we end up with

Proposition 4. The variance V(d) fulfills

~2

	

1

	

H(2)

1"d) 6L2 + 12

	

L 21 -
[p2]0 + P2(logQn)

where P2(x) is a continuous periodic function of period 1 and mean 0, and [Pi]o is
the "mean" of the square of the function P,(x) from Theorem 3 .

3. An Analysis of the Function P 1 (x)

First, by the elementary formula

k~ C
k k al-(r+a+ 11~



we may rewrite

as

resp .

gives the desired identity. O

Remark . Once the formula is known, it may of course also be proved by induction .

An immediate consequence is the formula

1 a - t 1
[ t]o = zP2

	

Y_ _Z IFU - xk)I
L j=o j!2 k#o

The following lemmata evaluate the inner sums. A proof for the special instance
Q = 2, using series transformation results due to Ramanujan, is given in [10] . In
the Appendix, we sketch an alternative proof for general Q > I using the Mellin
transform combined with the residue calculus .

a(k)(-a)(k) _
C

a + k -

1)(-

a + k - 1) (-a)

(a)k!2

	

k

	

k

	

k

	

k
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P t (x) _ - 1

	

e2nikxr(
_X;,) -

(~ -1-
Xk).t

L k#o

	

2=o

	

a!

Pt (x) = _ 1 O e2nikxF(_
Xk)

d - 1 - Xk

Lk#o

	

d-1

Therefore the mean [P'1 0 of P'(x) is

2

	

2 Xk -

	

-Xk -
[Pt ]o = L2 k

IF( - Xk)I
(d - 1 ( d -

1 1) ,

it is this quantity that we are going to study thoroughly in this section .

Lemma 5 .
Ca n

1) - a

n

1)

k =0 (k) ( ka)

Proof: We use Euler's first identity for hypergeometric series [7], [8]

2Ft (c - a, c - b; c ; x) = t Fo(c - a - b ; x) 2 F, (a, b ; c ; x)

in the special instance c = 1, b

	

- a where it takes the form

(1 - a)'")(1 + a)('

	

1

	

a(")(-Q)(")

)2	 x" =

	

12

	

X °
n_o

	

n .

	

1 - X n20

	

n .

with the Pochhammer symbol a(") = a(a + 1) . . .(a + n - 1). Now comparing the
coefficients of x" and observing that

(1 - a) ( " ) (1 + a)( ")

C

n - a) (n + a) (-a - 1)(a - 1)

n! 2

	

n

	

n

	

n

	

n
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Lemma 6. If j >- 1,

( _21\
~ 1_0 + Xk)r(J - Xk) - 2L (2j - 1)!

	

1
hZO

	

h

	

Qh+
'

k

		

- 1

+ L(2j - 1)!2-2, - (j - 1)!2 .

Lemma 7.
2

	

2

	

h 1

Y_ F(Xk)F( - Xk) _ +
L

- Llog2 - 2L I (-h) -
k#o

	

6

	

12

	

h>-1 h(Q - 1)

Now this gives us our final formula which we therefore state as a proposition .

Proposition 8 .

n 2

	

1

	

Iog2

	

2

	

(1
)
h-'

	

2 °-1 1 (2I)

	

C

-2I1	1[p2]0
1 = 6L2+ 12

	

L

	

LhZlh(Qh_1)
+L ;

2j j ,,

	

h Qh+, -1
+ I °-1 1 2j 2_ 2j - Hd2 'i

L ;I 2j i

	

L 2

4. -Behavior of the Variance for Large d

Combining Propositions 4 and 8 we have proved that the main term of V (dl for
n . -+ oc is given by

log 2 1

Y (') 2-2i + 2

	

(_ 1 _ 1_ 2

	

1 C2I/

Y - 2I1

	

1
L

	

L j-1 2j

	

L ha h(Qh

	

) L ;=1 2j j hzo

	

h // Q h+; - 1

+ P2 (log 2 n)

where P 2(x) has mean zero .

In this section we want to analyze the nonfluctuating part of the above quantity for
d

	

oc .

We start with the first sum and prove, as the main step,

Lemma 9.

4-i i
(2j _

	

1+J1-t
2j j

	

- [ti] log	
2

Proof: We have

1+J1-t 1

	

1+J1-t
[ti] log	2	 = _ [t i -1]

C
log	

j

	

2

= - 1 1 [ t;-1 ]	1

2j

	

J1-t(1+J1-t)
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To find the coefficient in this sum we use the formal residue calculus, as described
in [6], with the substitution

t = (1	
+uu)2

	

and

	

dt = (i 1+ u)3
du .

1

	

=

	

1

	

i	1

[

	

] fl-t(1+/1-t)[t] t /1-t(1+/1-t)

_ [u-']4-iu-i(1 + u)2' 1
+ u 1 + u 4(1 - u)

1-u 2 (1+U) 3

= 241 -i[uJ- 1 ] ( 1 + U)2i-1

= 1 41-i (2j - 11
2

	

j-1 '

and this is clearly equivalent to the announced formula. p

As an immediate consequence of the lemma we get

Proposition 10. As d -+ oo,
I Y 1 (2j 2-2i =

!-0g2 + 1 d-112 + 0(d -3/2 ) .
L j = i 2j j

	

L

	

/7r
Proof: We have

1 (2J'\ 2-2i = -[td_1]

1 log 1 + /1 - t
i _ 1 2j j

	

1 - t

	

2

_ [td-1]
I
109 2 - [td-1] 1 1 t log(1 + "/1 - t)

= log2 - [te-']
1

1 t log(1 + /1 - t) .

The latter generating function has its dominating singularity at t = 1 and behaves as

f

1 1 t log(1 + Jl - t)	 t + 0((1 - t)-3/2)

so that by singularity analysis [4] the coefficient of td-1 behaves like

1 d-112 + 0(d-3l2) (d -9 oo) . p

It remains to treat the more complicated sum

_ d-1 1

	

22j)

	

I
~d-1 iY 2j

(2j)
jn2. ( h ) Qh+' - 1

(t 1),
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Observe that

2j

	

1

	

(-h-j)m
h~0 h ) Qh+ ' - 1 hz0 ( h ) Qh+' m>0 Q

E (Q-m(1 + Q-m)-2) .
m>- 1

Now it follows from a simple substitution in Lemma 9 that

1 2'

	

1

	

_
2J J Qm(1 + Q-m)2

	

- [t'] log

Therefore we have

£d-1 =

Observing that

d-1

£x = - log
m21

we find by singularity analysis

Proposition 11 . For any E > 0, we have for d -+ oc

L £d-1
=
L

Y1 1090 + Q-m) + 0
C~

	 1+	Q(	Q-1
22

The main term coincides with

2 Y(- 1)h-1

L h21 h(Qh - 1)'

whereas, for Q > 1, the remainder term is exponentially small for d -+ oo compared
with the remainder term from Proposition 10. Altogether we have proved :

Theorem 12. The nonfluctuating part of the main asymptotic term of the variance
VIdj for n oc behaves for d -+ oo as

l l+

1 log 1 + Q-m

log(1 + Q -m)
mz1

1+

I 1 +

2

4t
Qm(1 + Q-m)2

2

4t

Qm(1 + Q-m ) 2

2

4t
Qm(1 + Q-m)2

I d-u2 + 0(d-3/2 )
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Remark. This analysis is of more than local interest; the periodic function P t (x) is
not uncommon in the Analysis of Algorithms. We mention e .g. [13] .

5. Application to Probabilistic Counting

To continue the discussion from the Introduction, let us just mention that (by means
of a hash function) each data value produces exactly one bit, and it is in position
k >- 0 with probability 2" . The OR-composition of all the bits (l's) constitutes
the string, as seen in the Introduction . Now this is exactly a geometric probability.
The result of Flagolet and Martin states that (apart from the fluctuations) the
average value of R„ is asymptotic to log e n - 0.37; the Szpankowski-Rego parameter
-1 has an average of log e n + 0.33, whence we deduce the average size of the fringe
to be less than 1 .

The variance in the Flajolet-Martin-instance is approximately 1 .257 and in the
Szpankowski-Rego-instance 3 .507 .

Below we give the limiting values of the variances V„t d) for n -+ co and some values
of d for the special instance q =,Z, i .e . Q = 2 .

d lim V(d)

1 3.5070

2 1 .4256

3 0.9053

4 0.6740

Finally we mention that from the algorithmic point of view it is easy to maintain
the parameter of interest . It is not even necessary to keep the whole actual bit string
(the OR-composition). It is sufficient to store the actual d data values with highest
entries .

Appendix

As announced in Section 3 we sketch here a derivation of the formula from Lemma
6 (Lemma 7 can be proved in a quite similar manner) .

We start from the left hand side and interpret the sum as the collection of the residues
at the poles Xk , k # 0, of the function

L I'( .1 +z) ]-(j-z)
e Lz - 1
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Therefore we have

_

	

(j+z)r(j-z)
d

	

L f(

	

r(j+z)r(j-z)
d

k~
~r(j + Xk)~` = 2

L
ni 1i2~ r (

	

eLz - 1

	

z -
2ni -1/2)

	

e Lz - 1

	

z

- F(j) 2 .

(r(j) 2 is the residue at z = 0 .)

Now we use the decomposition

1

	

1
eLz - 1 =-1- e_Lz

-1

for the second integral and get

L

	

r(j+z)r(j-z)
dz

27ri (-1/2)

	

eL-
- - 1

=2

iJ

	

r(j+z)r(j-z)dz+ LJ

	

1'(j+i)r(j - z) dz
(-1/2)

	

27r i (-1/2)

	

e

	

- 1

= zi

	

F(j + z)r(j - z)dz + L
ii
f F(jQLz -( i +z) dz .

(0i

	

(112

Therefore,

r

	

2 = 2L

	

F(j + z)r(j - z)

	

L
k~

I (1 + Xk)I

	

2~ri (1/2)

	

eL2 - 1	 dz
+ 2ni (0)

F(j + z)]-(j - z)dz

- r(j) 2
= 1 1 + 1 2 - r(j) 2 .

1 1 is evaluated by shifting the contour to the right and collecting the negative
residues, which gives

F(j +m) (- 1}~ -m +1
1 1 =-2L Y- Lme

and with m = h +j

= 2L

	

(h + 2j - 1)!(-1)h

	

1
h20

	

h!

	

Qh+j - 1

= 2L(2j - 1)!

	

2j

	

1
~

	

h+;
hzo h Q - 1

Integral 1 2 is of interest for itself and appears already in early references to the Mellin
transform technique as by Nielsen [12, p. 224] .

We start with the function

i
f(x) = 0 + x) 2 ,
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and perform its Mellin transform (see, e.g., [3] for definitions)

f*(s)=
f

'0
.f(x)xs-'dx=B(j+s,j-s)= r(j+s)r(j-s)

o

	

F(2j)

with the Beta function B(z, w) (compare [1]) . The fundamental strip is <-j,j> .
Therefore the inversion formula for the Mellin transform gives

1

	

r(j + S) r(j - s)
x -Sds .f(x) = 2ni to)

	

F(2j)

Now we may evaluate at x = 1 and get the formula

1

	

r(j + s)r(j - s)ds = F(2j)2 -1 j .
2iri (0)

This completes the proof of Lemma 6 .
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