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Abstract. The Hamming weight of the non-adjacent form is studied in relation to the
Hamming weight of the standard binary expansion. In particular, we investigate the
expected Hamming weight of the NAF of a n-digit binary expansion with k ones where
k is either fixed or proportional to n. The expected Hamming weight of NAFs of binary
expansions with large (≥ n/2) Hamming weight is studied. Finally, the covariance of the
Hamming weights of the binary expansion and the NAF is computed. Asymptotically,
these Hamming weights become independent and normally distributed.

1. Introduction

Signed digit expansions of low Hamming weight are important in various branches of
Mathematics and Computer Science, such as efficient arithmetic [16], coding theory [18],
and cryptography [15]. A prominent example is the so-called Non-Adjacent-Form (NAF)
which uses the digits 0, 1, and −1 and base 2:

m =
n∑

j=0

εj2
j

with εjεj+1 = 0 for all j. It is well-known [16] that every integer admits exactly one such
representation and that it minimises the Hamming weight (the number of non-zero digits)
over all representations of the same integer with digit 0, 1, −1 (but without imposing the
syntactic restriction).

The expected Hamming weight of a non-negative integer less than 2n is known to be
1
3
n + O(1), cf. for instance [2, 15, 11]. A more detailed analysis can be found in [17], [8],

and [9].
The aim of this paper is to study the expected Hamming weight under more refined input

models, for instance: Does the expected Hamming weight increase, if the input is known
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to have a binary expansion of large Hamming weight? How big is the correlation between
the Hamming weights of the binary expansion and the NAF? Are they independent?

Obviously, the non-negative integers less than 2n are exactly those with standard binary
expansion of length at most n. We study the expected Hamming weight of the NAF of
such an integer under the assumption that its binary expansion has Hamming weight k
for k/n in a certain range (Theorem 1). For instance, if k/n ≈ α, the expected Hamming
weight is asymptotically equal to

1 − 4
(
α − 1

2

)2

3 + 4
(
α − 1

2

)2 n.

For α = 1/2, this equals n/3 as in the unrestricted case, otherwise, the expected Hamming
weight is smaller.

If k is fixed and only n tends to infinity, Theorem 2 states that the expected Hamming
weight is k + O(1/n2). The intuitive explanation is that for k small with respect to n,
i.e., the ones in the binary expansion are sparse, the NAF tends to agree with the binary
expansion.

In Theorem 3, we study the expected Hamming weight under the assumption that the
Hamming weight of the binary expansion is “large”, i.e., at least n/2. So these are the
worst cases of the binary expansion. The NAF, however, is quite immune: the expected
Hamming weight is still asymptotic to

n

3
+

4

9
+

2
√

2 (7 + (−1)n)

9π
· 1√

n
+ O

(
1

n

)

.

The difference to the unrestricted input model only occurs in the coefficient of 1/
√

n.
Finally, we consider the Hamming weight of the binary expansion and the Hamming

weight of the NAF as a random vector and study their covariance as well as its limiting
distribution (Theorem 4). The covariance is

2

3
+ O

( n

2n

)

,

which is an order of magnitude smaller than the variances, but still non-zero. Asymptot-
ically, however, the coordinates of the random vector become independent and normally
distributed.

The methods used include transducer automata and generating functions, in particular
bivariate rational generating functions. Asymptotics in the central region are derived
via Bender and Richmond’s [3, 4] method, in the case of fixed k by singularity analysis
as introduced by Flajolet and Odlyzko [6], cf. also the forthcoming book of Flajolet and
Sedgewick [7]. For the large input Hamming weight case, MacMahon’s Omega operator [14]
is used to select the relevant terms of the generating function, cf. also [1]. The coefficients
are again estimated by singularity analysis. Finally, the limiting distribution of the random
vector outlined above is derived via a variant of Hwang’s [13] quasi-power theorem, cf. [10].

Acknowledgement. The authors thank S. Wagner for fruitful discussions on Theorem 1.
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2. Generating Functions

As usual, the unsigned (or standard) binary expansion of an integer m is the unique
sequence εj, j ≥ 0, with εj ∈ {0, 1} such that m =

∑

j≥0 εj2
j . We will sometimes omit the

words “unsigned” or “standard” and just speak about the “binary expansion”. The non-
adjacent-form (NAF) of an integer m is the unique sequence εj, j ≥ 0, with εj ∈ {−1, 0, 1}
such that m =

∑

j≥0 εj2
j and εjεj+1 = 0 for j ≥ 0. Existence and uniqueness of the NAF

have been proved in [16]. The Hamming weight of an expansion εj, j ≥ 0, is the number
of nonzero εj.

Let akℓn be the number of nonnegative integers less than 2n whose unsigned binary
expansion has Hamming weight k and whose NAF has Hamming weight ℓ. We consider
the generating function

G(x, y, z) =
∑

k,ℓ,n≥0

ak,ℓ,nx
kyℓzn.

To compute G(x, y, z), we use the transducer automaton mapping the unsigned binary
expansion of an integer to its NAF. It is shown in Figure 1 (for instance, it is equivalent to
the transducer in [12, Figure 2]). The labels of the states correspond to carries. Note that
input and output are read resp. written from right to left. An edge with input Hamming

0 .1 1

0|0

1|ε

0|01

1|01̄

0|ε

1|0

Figure 1. Transducer mapping a binary expansion of an integer to its NAF.

weight k and output Hamming weight ℓ corresponds to an entry xkyℓz in the transition
matrix M of this transducer:

M =





z xz 0
yz 0 xyz
0 z xz



 .

Here, the states have been ordered as 0, .1, 1. Given an integer m less than 2n, the
transducer runs from the initial state 0 to some state reading the n-digit unsigned binary
input. If this run ends in some state 6= 0 (representing some carry), the output is not yet
finished: If ending in state .1 or 1, there is an additional output 01 (corresponding to a
contribution y) in both cases. Therefore, the generating function G is given by

G(x, y, z) = (1, 0, 0)(I − M)−1(1, y, y)t,

where the superscript t indicates transposition of the vector. This can be evaluated to

G(x, y, z) =
x2y2z2 − x2yz2 − xyz2 − xz + xyz + 1

x2yz3 + xyz3 + xz2 − 2xyz2 − xz − z + 1
.
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We are interested in
bkn :=

∑

ℓ≥0

ℓakℓn,

which corresponds (after division by the mass Mkn =
∑

ℓ≥0 akℓn) to the expected Hamming
weight of the NAF of an nonnegative integer less than 2n with Hamming weight k of its
unsigned binary expansion.

The generating function
∑

k,n≥0 bknxkzn can be obtained by differentiating G(x, y, z)
with respect to y and setting y = 1:

(1) Gy(x, 1, z) =
∑

k,n≥0

bknxkzn =
xz (x2z2 + xz2 − 1)

(xz + z − 1)2 (xz2 − 1)
.

The mass Mkn =
∑

ℓ≥0 akℓn is the number of n-digit unsigned binary expansions with
Hamming weight k, thus

Mkn =

(
n

k

)

.

Of course, this corresponds to
∑

k,n≥0

Mknxkzn = G(x, 1, z) =
1

1 − z − xz

which is the generating function of the binomial coefficients by the recursion of Pascal’s
triangle.

In Section 3, we need a quite trivial lower bound for bkn, which shall be derived at this
point.

Lemma 2.1. For n ≥ 2k − 1, the estimate bkn ≥ k(n − 2k + 2) holds.

Proof. Consider the number

mj = ( 0 . . . 0
︸ ︷︷ ︸

n−j−2k+1 digits

1 0 . . . 0
︸ ︷︷ ︸

j digits

0101 . . . 0101
︸ ︷︷ ︸

2k−2 digits

)2

for 0 ≤ j ≤ n − 2k + 1 given by its unsigned binary expansion. The unsigned binary
expansion has Hamming weight k and equals the NAF of mj . Thus the mj , 0 ≤ j ≤
n − 2k + 1, contribute (n − 2k + 2)k to bkn. �

3. Asymptotics of bkn

The aim of this section is to derive an asymptotic expression for bkn/Mkn.

Theorem 1. Let 0 < c < d < 1 be real numbers. Then the expected Hamming weight
of the NAF of a nonnegative integer less than 2n with unsigned binary digit expansion of
Hamming weight k is asymptotically

(2)
bkn

Mkn

∼ 1 − 4
(

k
n
− 1

2

)2

3 + 4
(

k
n
− 1

2

)2 n,

uniformly for c ≤ k/n ≤ d.
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Remark 3.1. If k/n ∼ α for a fixed α in the interval (0, 1), then the expected Hamming
weight of the NAF of a nonnegative integer less than 2n with unsigned binary digit expan-
sion of Hamming weight k is asymptotically

(3)
bkn

Mkn

∼ 1 − 4
(
α − 1

2

)2

3 + 4
(
α − 1

2

)2 n.

Remark 3.2. The coefficient

(4)
1 − 4

(
α − 1

2

)2

3 + 4
(
α − 1

2

)2

attains its maximum 1/3 for α = 1/2. Note that the average Hamming weight of a
NAF of an integer less than 2n (without restrictions on the input Hamming weight) is also
n/3+O(1). The intuitive explanation for that is that Mαn,n obviously attains its maximum
at α = 1/2, and the decrease of Mαn,n is sufficient such that all other bαn,n/Mαn,n do not
influence the overall outcome too much anyway.

It is also worth noting that the expression (4) is independent of the sign of (α − 1/2),
i.e.,

bαn,n

Mαn,n

∼ b(1−α)n,n

M(1−α)n,n

.

On the level of generating functions, this corresponds to
∑

k,n≥0

(bkn − bn−k,n)x
kzn = Gy(x, 1, xz) − Gy(1/x, 1, xz) =

(x − 1)z(xz + z + 1)

(xz + z − 1) (xz2 − 1)
.

Comparing this with (1), we note that in the denominator, the factor (xz + z − 1) only
occurs once instead of twice.

The main part of the proof relies the following lemma formulated by Drmota [5], which
is a combination of results of Bender [3] and Bender and Richmond [4]. Note that the
letters k and n have been switched in comparison to [5].

Lemma 3.3. Let c(x, z) =
∑

k,n≥0 cknx
kzn be a generating function of non-negative num-

bers ckn and let a < b be positive real numbers such that c(x, b + ε) has positive radius of
convergence (as a function in x) for some ε > 0. Suppose that

ϕk(z) =
∑

n≥0

cknz
n ∼ akg(z)λ(z)k (k → ∞)

holds uniformly in R(a, b, φ) = {z : a ≤ |z| ≤ b, | arg(z)| ≤ φ} for some φ > 0, where ak >
0, g(z) is continuous and non-zero and λ(z) is non-zero and has bounded third derivative

for z ∈ R(a, b, φ). Furthermore suppose that d2

ds2 log λ(es)|es=z 6= 0 for z ∈ [a, b] and that
there exists a δ > 0 such that c(x, z) is analytic and bounded for |z| ∈ [a, b], z /∈ R(a, b, φ),

and |x| ≤ (1 + δ)/λ(|z|). Then d2

ds2 log λ(es)|es=z > 0 and we have

ckn ∼ ak√
2πk

g(h(n/k))

σ(h(n/k))

λ(h(n/k))k

h(n/k)n
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uniformly for n/k ∈ [µ(a), µ(b)], where

µ(z) =
d

ds
log λ(es)|es=z,

σ(z) =

(
d2

ds2
log λ(es)|es=z

)1/2

,

and h(t) is the inverse function of µ(z).

Proof of Theorem 1. We split Gy(x, 1, z) into two summands separating the coprime factors
depending on x in its denominator:

Gy(x, 1, z) = G(1)(x, z) + G(2)(x, z),

G(1)(x, z) =
−xz5 + 2xz4 − 3xz3 + z3 + 2xz2 − 2z2 − xz + 3z − 2

(1 − z + z2)2 (1 − xz2)
,

G(2)(x, z) = −xz5 + z5 − 4xz4 − 4z4 + 6xz3 + 8z3 − 6xz2 − 10z2 + 2xz + 7z − 2

(1 − z + z2)2 (1 − xz − z)2
.

These auxiliary functions are generating functions of some numbers b
(1)
kn and b

(2)
kn , respec-

tively, i.e.,

G(j)(x, z) =
∑

k,n≥0

b
(j)
knxkzn

for j ∈ {1, 2}.
Our first aim is to show that the contributions b

(1)
kn are asymptotically smaller than b

(2)
kn

and, in particular, that the b
(2)
kn are nonnegative, as required by Lemma 3.3.

For fixed z with |z| < 1, the function G(1)(x, z) has a simple pole at x = 1/z2 as a
function in x, thus the coefficient of xk of G(1)(x, z) is the negative residue of G(1)(x, z)/xk+1

at x = 1/z2, and we obtain

[xk]G(1)(x, z) = − z2k−1

(1 − z + z2)2

for k ≥ 1. Extracting the coefficient of zn in this expansion amounts to summing up the
contribution of the poles of 1/(1 − z + z2)2. Since these are double poles, we obtain

(5) b
(1)
kn := [zn][xk]G(1)(x, z) = −[zn−2k+1]

1

(1 − z + z2)2
= O(n − 2k)

for n ≥ 2k−1 ≥ 1. Together with Lemma 2.1 we conclude that b
(2)
nk := [xk][zn]G(2)(x, z) ≥ 0

for all n ≥ 0 for sufficiently large k (a precise evaluation of b
(1)
kn would show that k ≥ 1 is

sufficient, but we do not need this in order to use Lemma 3.3). Furthermore, we see that

b
(1)
kn = o(bkn) for k → ∞.

For the analysis of b
(2)
nk , we want to apply Lemma 3.3 on G(2)(x, z). We set b = 1− c and

a = 1 − d, respectively. This means 0 < a < b < 1. From this we see that G(2)(x, b + ε)
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has a positive radius of convergence, if we choose 0 < ε < 1− b. Extracting the coefficient
of xk in G(2)(x, z) can be done by routine calculations yielding

(6) ϕk(z) =
∑

n≥0

b
(2)
knzn =

(
z

1−z

)k
(z4 + kz3 − 3z3 − kz2 + 5z2 + kz − 5z + 2)

(1 − z) (1 − z + z2)2 .

Setting λ(z) = z/(1 − z) and

g(z) =
z

(1 − z) (1 − z + z2)

yields

ϕk(z) ∼ kg(z)λ(z)k (k → ∞)

uniformly for a < |z| < b. We note that g(z) is non-zero and continuous for z ∈ [a, b] and
λ(z) ∈ C∞[a, b]. We have

d2

ds2
log λ(es)|es=z =

z

(1 − z)2
6= 0

for z ∈ [a, b]. Thus the assumptions of Lemma 3.3 are satisfied with φ = π (thus the
assumption on |z| ∈ [a, b], z /∈ R(a, b, φ) is empty). The quantities involved are

µ(z) =
1

1 − z
,

σ(z) =

√
z

1 − z
,

h(t) =
t − 1

t
.

We obtain

(7) b
(2)
kn ∼ n3/2

√
n − k

√
k√

2π(n2 − nk + k2)

(
n − k

k

)k (
n

n − k

)n

uniformly for n/k ∈ [ 1
1−a

, 1
1−b

] = [1
d
, 1

c
].

An asymptotic formula for the mass Mkn can be obtained from Stirling’s formula:

(8) Mkn ∼
(n

k

)k
(

n

n − k

)n−k√
n

2πk(n − k)

Dividing (7) by (8) yields (2), since bkn ∼ b
(2)
kn . �

4. Asymptotics of bkn for fixed k

In Theorem 1, the asymptotics of bkn were derived under the assumption that k and n
both tend to infinity at the same speed. The purpose of this section is to derive the same
statement for fixed k.
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Theorem 2. Let k be a fixed positive integer. Then the expected Hamming weight of the
NAF of a nonnegative integer less than 2n with unsigned binary digit expansion of Hamming
weight k is asymptotically

(9)
bkn

Mkn
= k − k(k2 − 3k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)

,

whereas the expected Hamming weight of the NAF of a nonnegative integer less than 2n

with unsigned binary digit expansion of Hamming weight (n − k) is asymptotically

(10)
bn−k,n

Mn−k,n
= (k + 2) − 2k

n
− (k − 1)k(k + 2)

n2
+ O

(
1

n3
+

1

nk−1

)

.

Proof of Theorem 2. We only prove (9). The proof of (10) runs along the same lines, it
suffices to replace Gy(x, 1, z) by Gy(1/x, 1, xz).

By (5), we have

bkn = [zn]ϕk(z) + O(n) = [zn−k]
(z4 + kz3 − 3z3 − kz2 + 5z2 + kz − 5z + 2)

(1 − z)k+1 (1 − z + z2)2 + O(n),

where ϕk(z) is given in (6). We extract the asymptotics of bkn by singularity analysis, see
Flajolet and Odlyzko [6] and the forthcoming book of Flajolet and Sedgewick [7]. The
simple poles at z = (1 ±

√
−3)/2 give a contribution of O(1). Expanding around the pole

at z = 1 gives

bkn = O(n) + [zn−k]
(
k(1 − z)−k−1 + (2 − k)(1 − z)1−k + O(1 − z)2−k

)
.

We have

(11) [zn](1 − sz)α =
snn−α−1

Γ(−α)

(

1 +
α(α + 1)

2n
+

α(α + 1)(α + 2)(3α + 1)

24n2

+
α2(α + 1)2(α + 2)(α + 3)

48n3
+ O

(
1

n4

))

for α /∈ {0, 1, 2, . . .} by [6, Eqn. (2.2)]. The function hidden in the O-term is meromorphic,
thus its contribution to bkn does not exceed O(nk−2−1) by [6, Theorem 1]. We obtain

bkn =
(n − k)k

(k − 1)!

(

1 +
k(k + 1)

2n
+

3k4 + 14k3 − 15k2 + 70k − 48

24n2
+ O

(
1

n3

))

+ O(n).

On the other hand, the mass Mkn can be estimated as

Mkn =
(n − k)k

k!

(

1 +
k(k + 1)

2n
+

3k4 + 14k3 + 9k2 − 2k

24n2
+ O

(
1

n3

))

.

This yields (9). �
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5. Binary Expansions of Large Weight

In this section, we focus on the NAFs of integers with unsigned binary expansions of
high weight, in particular, with a weight greater or equal half of the length of the binary
expansion.

We set

cn :=
∑

k≥n/2

bkn, Mn :=
∑

k≥n/2

Mkn,

and we are interested in the asymptotic behaviour of cn/Mn.

Theorem 3. The expected Hamming weight of a nonnegative integer less than 2n with
unsigned binary expansion of weight ≥ n/2 equals

(12)
cn

Mn

=
n

3
+

4

9
+

2
√

2 (7 + (−1)n)

9π
· 1√

n
− 16 (1 + (−1)n)

9π
· 1

n
+ O

(
1

n3/2

)

.

The expected Hamming weight of a nonnegative integer less than 2n with unsigned binary
expansion of weight ≤ n/2 equals

(13)
n

3
− (1 + (−1)n)

√
2

3
√

π

√
n+

4

9
+

2 + 2(−1)n

3π
− 8 + 8(−1)n + 23π + 7(−1)nπ

6
√

2
√

nπ3/2
+O

(
1

n

)

.

Remark 5.1. If the assumption on the weight of the unsigned binary expansion is removed,
then the expected Hamming weight of a nonnegative integer less than 2n equals

n

3
+

4

9
+ O(2−n).

This means that only the third order term is influenced by the additional assumption
k ≥ n/2, but for even n, the influence of the assumption k ≤ n/2 is much larger.

Proof of Theorem 3. We focus on the proof of (12). The proof of (13) is quite similar, cf.
the comments at the end of this proof.

We consider

Gy(λ
2, 1, z/λ) =

∑

k,n≥0

bknλ2k−nzn =
λ3z(λ2z2 + z2 − 1)

(z − 1)(z + 1)(zλ2 − λ + z)2
,

where z and λ are in neighbourhoods of 0 and 1, respectively. We want to extract those
summands of the power series with 2k − n ≥ 0, i.e., nonnegative exponents of λ, and
setting λ = 1 afterwards. This amounts to applying MacMahon’s [14] Omega operator Ω

≥
(cf. Andrews, Paule and Riese [1]) to Gy(λ

2, 1, z/λ):

Ω
≥
Gy(λ

2, 1, z/λ) =
∑

k,n≥0
2k−n≥0

bknzn =
∑

n≥0

cnz
n.

However, the Mathematica r© package described in [1] cannot handle this type of generating
function, so we have to apply the Omega operator manually.



10 CLEMENS HEUBERGER AND HELMUT PRODINGER

We factorise the quadratic term in λ in the denominator of Gy(λ
2, 1, z/λ) and perform

a partial fraction decomposition (in λ) to obtain

(14)

Gy(λ
2, 1, z/λ) =

λz + 2

(z − 1)(z + 1)

+
16z6 − 24wz4 − 40z4 + 13wz2 + 17z2 − 2w − 2

(z − 1)(z + 1)(2z − 1)2(2z + 1)2(w − 2λz + 1)

− 2 (2z2 − w − 1) z2

(z − 1)(z + 1)(2z − 1)(2z + 1)(w − 2λz + 1)2

− 16z6 + 24wz4 − 40z4 − 13wz2 + 17z2 + 2w − 2

(z − 1)(z + 1)(2z − 1)2(2z + 1)2(w + 2λz − 1)

− 2 (2z2 + w − 1) z2

(z − 1)(z + 1)(2z − 1)(2z + 1)(w + 2λz − 1)2
,

where the abbreviation w :=
√

1 − 4z2 has been used. We now examine every summand in
order to see which contributes to non-negative powers of λ. We rewrite the denominators
as

1

w − 2λz + 1
=

1

(1 + w)
(
1 − 2λz

1+w

) =
∑

m≥0

(2λz)m

(1 + w)m+1
,

1

w + 2λz − 1
=

1

2λz
(
1 − 1−w

2λz

) =
∑

m≥0

(1 − w)m

(2λz)m+1
,

keeping in mind that

2λz

1 + w
∼ z,

1 − w

2λz
∼ 2z2

2z
= z

for z → 0 and λ → 1. This implies that Ω
≥

deletes the last two summands in (14) since

these obviously only contribute negative powers of λ, whereas the first three summands
are kept with λ replaced by 1. Thus we have

Ω
≥
Gy(λ

2, 1, z/λ) =
∑

n≥0

cnz
n =

z + 2

(z − 1)(z + 1)

+
16z6 − 24wz4 − 40z4 + 13wz2 + 17z2 − 2w − 2

(z − 1)(z + 1)(2z − 1)2(2z + 1)2(w − 2z + 1)

− 2 (2z2 − w − 1) z2

(z − 1)(z + 1)(2z − 1)(2z + 1)(w − 2z + 1)2

=
(3z − 1) (z2 + z − 1)

(z − 1)(z + 1)(2z − 1)2
− 2z4 − 4z3 − 4z2 + z + 1

(z − 1)(z + 1) (1 − 4z2)3/2
.
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We extract the asymptotics of cn by singularity analysis. The dominant singularities are
at z = ±1/2. The local expansions are

(15)
∑

n≥0

cnz
n =

1

6(1 − 2z)2
+

1

12
√

2(1 − 2z)3/2
+

1

18(1 − 2z)
+

241

144
√

2(1 − 2z)1/2
− 58

27

− 3337(1 − 2z)1/2

3456
√

2
+

158(1 − 2z)

81
+

46889(1 − 2z)3/2

41472
√

2
− 490(1 − 2z)2

243
+ O

(

(1 − 2z)5/2
)

for z → 1/2 and

(16)
∑

n≥0

cnz
n =

1

12
√

2(1 + 2z)3/2
+

49

144
√

2(1 + 2z)1/2
− 25

24

+
3191(1 + 2z)1/2

3456
√

2
+

5(1 + 2z)

18
− 15127(1 + 2z)3/2

41472
√

2
− 415(1 + 2z)2

864
+ O

(

(1 + 2z)5/2
)

for z → −1/2.
Furthermore, the function hidden in the O-terms is analytic in a “camembert-region”,

whence their contribution to cn does not exceed O(n−7/2) by [6, Theorem 1]. The contri-
butions of the two poles can be added, cf. [7, Theorem VI.5]. Applying (11) to (15) and
(16) yields

(17) cn = 2n

(
n

6
+

(
1

6
√

2π
+

(−1)n

6
√

2π

)√
n +

2

9
+

125
72

√
2π

+ 29(−1)n

72
√

2π√
n

+

457
1728

√
2π

− 887(−1)n

1728
√

2π

n3/2
+

7213
6912

√
2π

− 3059(−1)n

6912
√

2π

n5/2
+ O

(
1

n7/2

))

.

We now compute the total mass Mn. We have

2Mn =
∑

k≥n/2

2

(
n

k

)

= 2

(
n

n/2

)

[n even] +
∑

k>n/2

((
n

k

)

+

(
n

n − k

))

=

(
n

n/2

)

[n even] +
∑

k≥0

(
n

k

)

=

(
n

n/2

)

[n even] + 2n.

We estimate the binomial coefficient by Stirling’s formula and obtain

(18) Mn = 2n−1

(

1 +
1 + (−1)n

2
√

2π

(
2

n1/2
− 1

2n3/2
+

1

16n5/2
+

5

64n7/2
+ O

(
1

n9/2

)))

.

Dividing cn by Mn yields (12).
For proving (13), the operator Ω

≤
has to be applied, which amounts to removing the

second and the third summand in (14). The remaining calculation until (17) is very
similar, the only difference being that every square root is replaced by its negative. On
division by Mn as estimated in (18), however, the term of order

√
n does not cancel, and

this yields (13). �
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6. Limit Distribution

In the previous sections, we studied bkn, i.e., we considered the length n and the weight
k of the binary expansion as parameters and studied the (average) weight of the corre-
sponding NAFs.

In this section, however, we only consider n as a parameter, and we study the two
random variables H(Binary(Xn)) and H(NAF(Xn)), where Xn is a random nonnegative
integer less than 2n, Binary(m) and NAF(m) denote the binary expansion and the NAF of
m, respectively, and H( · ) denotes the Hamming weight of an expansion.

We are interested in the limiting distribution of the random vector

Vn := (H(Binary(Xn)), H(NAF(Xn)))

after appropriate rescaling. We use boldface letters for vectors, the components of a vector
x are (x1, x2), for instance. Inequalities for vectors have to be taken component-wise.

Theorem 4. With the notations above, we have

E(H(Binary(Xn))) =
n

2
,

E(H(NAF(Xn))) =
n

3
+

4

9
+ O(2−n),

Var(H(Binary(Xn))) =
n

4
,

Var(H(NAF(Xn))) =
2n

27
+

14

81
+ O(n2−n),

Cov(H(Binary(Xn)), H(NAF(Xn))) =
2

3
+ O(n2−n).

The random vector Vn is asymptotically normal, i.e.

(19) P

(
Vn −

( 1/2
1/3

)
n

√
n

≤ x

)

=
1

54
Φ(2x1)Φ

(

3
√

3√
2

x2

)

+ O

(
1√
n

)

,

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt

is the distribution function of the standard normal distribution.

This means that although H(Binary(Xn)) and H(NAF(Xn)) are correlated, they are
asymptotically independent. Their limiting distribution is the product of two normal
distributions.
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Proof of Theorem 4. The joint probability P(Vn = (k, ℓ)) is simply akℓn/2n in the termi-
nology of Section 2, thus the probability generating function can be computed as

P (x, y, z) =
∑

k,ℓ,n≥0

P(Vn = (k, ℓ))xkyℓzn

=
∑

k,ℓ,n≥0

ak,ℓ,nx
kyℓ
(z

2

)n

= G(x, y, z/2)

=
2 (x2y2z2 − x2yz2 − xyz2 − 2xz + 2xyz + 4)

x2yz3 + xyz3 + 2xz2 − 4xyz2 − 4xz − 4z + 8
.

The denominator of P (1, 1, z) factors as 2(2 − z)(1 − z)(2 + z), thus there are ana-
lytic functions ρj(x, y), j ∈ {1, 2, 3}, in a neighbourhood of (x, y) = (1, 1) such that the
denominator of P (x, y, z) exactly vanishes for z = ρj , j ∈ {1, 2, 3}, and we have

ρ1(1, 1) = 1, ρ2(1, 1) = 2, ρ3(1, 1) = 3.

The moment generating function of Vn can be obtained by extracting the coefficient of
zn in P (es1, es2, z) and has the form

E(e〈Vn,s〉) =
∑

k,ℓ≥0

P(Vn = (k, ℓ))eks1+ℓs2 = eu(s)n+v(s)(1 + O(κ−1
n ))

with

u(s1, s2) = − log ρ1,

v(s1, s2) = log

(

−2 (−es1+s2ρ2
1 − e2s1+s2ρ2

1 + e2s1+2s2ρ2
1 − 2es1ρ1 + 2es1+s2ρ1 + 4)

ρ1 (3es1+s2ρ2
1 + 3e2s1+s2ρ2

1 + 4es1ρ1 − 8es1+s2ρ1 − 4es1 − 4)

)

,

κn = 2n(1−ǫ),

where ρ1 = ρ1(e
s1 , es2) for s1, s2 in a neighbourhood of the origin and ε > 0 with

min{|ρ2(e
s1, es2)|, |ρ2(e

s1 , es2)|} ≥ 21−ε.
Differentiating eu(s)n+v(s) and setting (s1, s2) = (0, 0) yields (up to a term O(2−n)) the

means

E(Vn)t =

(
n

2
,
n

3
+

4

9

)t

+ O(2−n)

and the matrix of second moments

E(VnV
t
n) =

(
n2

4
+ n

4
n2

6
+ 2n

9
+ 2

3
n2

6
+ 2n

9
+ 2

3
n2

9
+ 10n

27
+ 10

27

)

+ O(n2−n).

Thus the variance-covariance matrix equals

E(VnV
t
n) − E(Vn)E(Vn)

t =

(
n
4

2
3

2
3

2n
27

+ 14
81

)

+ O(n2−n).

By a two-dimensional analogue [10] of Hwang’s quasi-power theorem [13], we obtain the
central limit law (19). �
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