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The minimal length of a plateau (a sequence of horizontal steps, preceded by an up- and followed by a down-step) in a
Motzkin path is known to be of interest in the study of secondary structures which in turn appear in mathematical biology.
We will treat this and the related parametaraximal plateau lengthminimal horizontal segmemtindmaximal horizontal
segmenas well as some similar parameters in unary-binary trees by a pure generating functions approach—Motzkin paths
are derived from Dyck paths by a substitution process. Furthermore, we provide a pretty general analytic method to obtain
means and limiting distributions for these parameters. It turns out that the maximal plateau and the maximal horizontal
segment follow a Gumbel distribution.
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1 Introduction

A Motzkin pathof lengthn in the (x, y)-plane from(0,0) to (n,0) consists of stepél, 1) (“up”), (1,—1)
(*down”), and(1, 0) (“level”), with the restriction that a Motzkin path must never go below:tkexis.

A plateauof length/ is a sequence df consecutive level steps, preceded by an up-step, and followed by a
down-step. Let us denofe’ the set of all Motzkin paths where every plateau is at Iéagps long. Note that
MY is the set ofall Motzkin paths. It has been described in [2, 10, 12] that the faiifyis of relevance in the
study ofsecondary structuresnd thus in turn irmathematical biology.

We are led in a natural way to rmndom variableMinPlateau which assigns to each Motzkin path the
minimal plateau length We show how to study this parameter, by a pure use of generating functions and
asymptotic techniques, without using any recursions, as for instance in [2]. Thus, our approach is very much
in line with the subtitleAnalytic Combinatoric®f this conference and the forthcoming book [6].

From a mathematical point of view, it is at least as interesting to study the random vaviakiiateau,
which assigns to each Motzkin path theximal plateau lengthAnalytically, this is more challenging, as it
resembles parameters likeightor maximal run lengthand the behaviour of the average is more intricate (we
will see thatMinPlateau = 0 for almost all Motzkin paths).

Furthermore, one can drop the restriction that the sequence of level steps must be rendered by an up- resp.
down-step. Considering the respective lengthallofmaximal) sequences of horizontal steps, we are led to the
parameterdlinLevel andMaxLevel.
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A related concept are unary-binary-trees. They are defined in a recursive way by saying that the empty tree
is a unary-binary-tree, and that a root followed by one unary-binary-tree (a unary node), or a root followed by
a left and a right unary-binary-tree (a binary node) are again unary-binary tres. They are a special instance of
the simply generated families of tregsrovided that one considers a leaf (empty node) as an internal node as
well, see [9].

The analysis of the aforementioned parameters can be performed within a very general framework, which
will be described in Section 4. It turns out that the averag®axLevel and MaxPlateau is of logarithmic
order, with fluctuating terms of lower order.

In order to obtain generating functions for our parameters, we use a substitution technigue—Motzkin paths,
for instance, can be obtained frddyck pathgwhich contain no level steps) by the following substitution: each
up-/down-step is replaced by an up-/down-step, followed by an arbitrary number of level steps. Additionally,
one allows for an arbitrary number of level steps at the beginning of the paths. This is easy to model using
generating functions—if one wants the paramdlaxLevel to be < k for instance, one allows only substitu-
tions with horizontal segments of length &; likewise, if MinLevel should be> &, the substitution must use
only horizontal segments of length k. For the parameters related to thlateay this can also be achieved,
since one can easily set up a generating function for Dyck paths where an up-step followed by a down-step (a
“peak”) gets a special label.

In the case of unary-binary trees, there is also a substitution that produces them starting from binary trees
(each leaf resp. internal node can be followed by an arbitrary sequence of unary nodes). In analogy to the
Motzkin paths, one could be interested in the minimal resp. maximal lengths of these chains of unary nodes.
To take the analogy further, th@ateauinstance would then correspond to the unary chains that grow out of
the leaves (and not the other nodes).

The approximations that will be derived later in this paper exhibiGhenbel distributior{or extreme value
distribution) as limiting distribution for the parametdvaxPlateau andMaxLevel (and the analogous parame-
ters in unary-binary trees). As shown in [8]| moments can be evaluated asymptotically in a semi-automatic
fashion. Here we confine ourselves to give the averages in an explicit form.

Fig. 1: A Motzkin path withMinPlateau = 2, MaxPlateau = 3, MinLevel = 1 andMaxLevel = 4.

2 Substitutions and generating functions
In the following, let us denote the generating function for Catalan pattis(by.
1-V1-4:2

222 '

Furthermore, leD(z, u) be the bivariate generating function for Catalan paths, where each peak is marked by
uz instead of2. If the empty path is ignored, it follows that

C(z) =

k 2u+ 22D(z,u)
D(z,u) = Z (zu + ZQD(Z’U)) T 1—zu—22D(z,u)
k>1 ’
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or

1—zu—22—V1—=2zu—222+ 22u2 — 223u + 24

222 '
Now, the generating functions for our problems follow easily from the aforementioned substitution process.
For instance, if we are interested in the generating function for Motzkin paths with the additional requirement
that each plateau has length at lelastve have to substitute by Zlk:l (andz by —-) to obtain

— 11—z

D(z,u) =

1 D( z z’“‘l)_1—22—zk’+2—\/1—42—!-422—22k+2+4zk+3—4zk+4+22k+4
1—2z \1—-2"1—-2/ 222(1 — 2) '

Analogously, we obtain the following generating function for Motzkin paths wMagPlateau is < k:

1 D( z  2(1 —zk+1)) 1 —22— 22 4283 — (1 — 22 4+ 2F3) (1 — 4z + 322 + 2F13)
1—2z \1-2" 1-2 222(1 — 2) ’
The situation is even simpler in the case of the paraméfiéntevel and MaxLevel: here, we just have to
replacez in the generating functio@'. Hence, if we wanMinLevel to be> k, we obtain

(r22)e (e () )t = P A O

Note that we have to allow level steps of len§tfyielding the summand 1 in the above expression), and that
we have to subtract the number of Catalan paths (which contain no level steps at all). Finally,

1 — k1 (z(l — z’“‘l))  1—2z—V1—2z— 3224 8zF+3 — 452F+1

1—2 1—2 222(1 — k1)

is the generating function for Motzkin paths withexLevel < k.

3 The parameters MinPlateau and MinLevel in Motzkin paths

From an analytic point of view, these two parameters are simpler and less interestindVisiRtzteau is 0

for almost all Motzkin paths, whereddinLevel is equal tol. Hence, the mean also tends to these values. We
will show this in detail in the case of plateaus only, the other case being analogous. Note that the generating
function for Motzkin paths wittMinPlateau > 1 is given by

1-22— 2% V1 -4z +422 - 223 + 423 — 425+ 26 1-22—2%— /(1 —2)2(1 - 32+ 22)(1 + 2 + 22)
222(1 —2) N 222(1 - 2)

A simple application of the Flajolet-Odlyzko singularity analysis [4] shows that the number of Motzkin paths
with n steps and the property that each plateau has lendtlis asymptotically given by

154+7V5 s 3+v5\"
8w 2 ’

whereas the overall number of Motzkin paths is given by the Motzkin numbers, which are asymptotically equal
to
E

.p3/2 . 3n
P .
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Hence,MinLevel equals O for almost all Motzkin paths. These asymptotics have been given in [2] as well.
Now, in order to determine an average, we have to consider the sum

1— 22— 2F2 /1 — 4z 4 422 — 22542 £ 42k+3 — 4pk+4 4 2k+4

Z 222(1 - 2)

k>1

We will show that the sum over all > 2 yields a function which is analytic within the open circle of radius
V2 — 1 around the origin, thus proving that the averag®aiPlateau is asymptotically equal to

5+7V5 [(3+vV5\"
54 6 ’
which tends td).

Since the coefficients of the Taylor series aroOrate positive for all summands, it suffices to prove that it
is convergent for = /2 — 1, implying absolute convergence for all valueszofithin the aforementioned
circle. Denote the sum over &l> 2 by S(z). Then we have

(2+\@)(17(\@—1)’u\/176(\/5—1)k+(\@—1)%)

SWV2-1)=>)" 7
E>2
N (24v2) 204 v2) (V2 - D
<> .
E>2
V2+1
= 5 < o0,

which finishes the proof.
In order to obtain the mean fddinLevel, one has to consider the sum

1—2—1/(1=2)2(1 —422) —42k+t2(2 — 22 + 2k 1—+v1—422
) (e (R e e i s M

= 222(1—z + 2F) 222

In the same way as before, we see that the sum/over is analytic within the open circle of radils396608
(the dominant singularity of the summand that corresponds+) around the origin, and that the average of
MinLevel thus tends td.

4 The parameters MaxPlateau and MaxLevel in Motzkin paths

Looking at the generating functions for these two parameters, we see that they have essentially the same
ky_ ./

form, namely%zg(z’zk) for some polynomials, where the dominating singularity (the smallest zero

of R(z, %)) is decreasing i and tending to a limit. Hence, rather than treat the two cases separately, we pro-

vide a general theorem and apply is to the two parameters as well as two similar parameters for unary-binary

trees (in the subsequent section). The following lemma gives the essential asymptotic formula:

Lemma 1 Let a generating functiorfii(z) be given by
P(szk)i R(Z,Zk>
Q(z,2%) ’

whereP(z,u), Q(z,u), R(z,u) are polynomials satisfying the following conditions:

fr(z) =
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e 79(z) := R(z,0) has a simple positive real rogt < 1 and no other roots i{z : |z| < p}, ro(z) is
positive forz < p andry(z) := R,(z,0) is positive forz = p,
e Q(z,2") has norootsin{z : |z| < p+ ¢} for some positive constant and sufficiently largé: > k;.

Then, the following asymptotic formula holds for &l kq:

12"1i(z) = exp(—dnp") (1+0(n 2+ kp* 4+ k2pkn=t + k:p%n))

[2"] foo (2)

uniformly ink, wheref,, := % VOI)%(Z’O) andg = _;;T((pp)) > 0.

Proof: First, we follow the lines of [7]: for suitableé < C' < 1 — p, there is no other root of, thanp inside
the disk{z : |z|] < p + 2C'}, and we have

|R<Z,Zk) - R(Z,O)| = O((p + C)k) < |R(Z70)|

for |z| = p + C andk > ko. By Roucle’s Theorem, we conclude th&( z, 2*) has exactly one simple root in
the disk{z : |z|] < p + C} for sufficiently largek. Since

sign(R(p, p*)) = sign(Ru(p, 0)) = sign(ri(p)) = 1
and

sign(R(p + ¢, (p+ §)¥)) = sign(R(p + 1,0) = 1

for sufficiently largek, there must be a real rop, := p + ¢, of R(z, 2F) with 0 < ¢, < % Applying the
well-known bootstrapping method, we find that= O(p*) and more precisely

€ = 7T/1(p)pk(1 + O(kpk)) _ 5pk+1(1 + O(kﬂk))
ro(p)

Itis also not difficult to show that the error term is positive for sufficiently |akgBlow, note that we can write
our generating function as

P(e,#9) = J— 2)on(2)
i) = Q=)

for some polynomiaky;, and thatpy, is the only singularity off;. within the disk{z : |z| < p + min(¢y, C)}.
We expandf; aroundpy:

@) Vs (2L ee/sklon) (sklon)  d(on) Cz\?
5 = 0 ™ alon) (1 pk> T o) (2sk<pk> mm)(l pk> T

wherepy (2) := P(z, zF) andqi(2) := Q(z, 2¥).
Applying the Flajolet-Odlyzko singularity analysis [4], we see that

/

n  VskleR) 3 3, 3ok [ sx(pe) (o) 1 2
) = 5 o) P (H(s*2(2skk(pk>_q§(pk))>” O >)

holds uniformly ink. Furthermore, note that

d
sk(pr) = —PkaR(Zﬂk)

2=Pk
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= —pr(R=(px, i) + kp) ' Ru(pr, pF))

= ok (Ra(p,0)(1 + Ole, + o)) + kol Ru(p, 0)(1 + Oleg + o)
= —pR.(p,0)(1+ O(kp"))

= —pro(p) (1 + O(kp"))

and similarly

sk(ow) = =SrG () (1 + O(K%0Y)),
ak(pr) = Q(p,0)(1 + O(p")),
@ (pr) = Q=(p,0)(1 4 O(kp")),

so that we have

X (1 + (z - % (ifé({;)) - %((pp”(?))))n‘l +0(n=2 + kp" + k2pkn_1)>.

Applying the singularity analysis tf., yields, on the other hand,

1= o (-G o)

from which we obtain

[E;}];i((i)) - (p—’;)n(1 +O(n™2 + kot + k2pkn_1)),

and the statement of the lemma follows from the fact that
(pﬁk)n = (1 + %)771 = (exp ( —5p" + O(k,o2k)))7n.
O

The asymptotic formula of this lemma can now be used to deduce information about the behaviour of the
corresponding random variable:
Theorem 4.1 With the notation of Lemma 1, suppose thgt is a random variable such tha?(X,, < k) =

%% ThenX,, asymptotically follows a Gumbel distribution, and the meaX gfis given by

1 log?
E(X,) =log,n +log, 6 + % + 5+ vlog, n +log, 3) + o( “’; ”) (4.1)
whereq = p~ 1, § = — p’"rlé(("p)), andz is the periodic function that is defined by the Fourier series
1 2kmi .
7 T — 2k7rzz. 4.2
logaZ ( loga)e (4.2

k0
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Proof: In order to obtain the mean df,,, we have to determine the sum
=S P>k =Y (1-PX,.<k)=Y_ (1— [Z]f‘“(Z))
k>0 k>0 k>0 [2"] foo (2)
In view of the structure of the generating functions, we h z"fi((i)) = 1 for k£ > n, hence the formula
reduces to N
[2"]fr(2) >
E(X,) = (1 — ),
1= 2
Now, let us replace the summamnd- % by the simpler expression
1 — exp(—dnp®)

and estimate the error term. Note first that we have

|P(X,, < k) — exp(—dnp*)| < P(X, < k) + exp(—dnp)
< P(Xn < kO) + exp(_anpko)
< nexp(—onp*o)

for k£ < kg, so the error term that comes from these summands is exponentially small and thus negligible.
Furthermore] — exp(—dnp"*) is exponentially small fot: > n. So we obtain, by Lemma 1,

Z (1 — exp( 5npk))

k=0
+0 <np” + nexp(—dnp™) Z exp(—onp®)(n=2 4+ kp® + K2 pFn1 + knp%))
k=ko
or -
E(X :Z 1 —exp(—dnp ))—i—O( _1—|—Zexp —onp®) (kpk + knp? ))
=0 k=ko

Forky < k < log” , the error term i€ (n exp(—4&+/n)), for % <k < m,itisO(*%"). In the remaining

logn
loga’

interval, we have fok <

1
exp(—dnp®) (kp* + knp?) < nlognexp(—dnpk)p?* <« —— ogn

and, fork > 182
oga

1
exp(—dnp"®) (kp* + knp®*) < lognexp(—dnp®)p* <« %

So we finally arrive at

oo

E(X,)= Z (1 — exp(—dnp")) + O<10g2 n)

n
k=0
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The infinite sum is a standard example for an application of the Mellin transform—the asymptotic formula

S (1 — exp(—z/ak)) — R 1
I;J(l exp(—z/a )) = log, = + loga + 5 —&—w(logax)—&—O(z)

can be found in [3, 11] for instance. Herg,is the function given in (4.2). We only have to set= én to
obtain the desired formula (4.1).

Finally note that the expressidn— exp(—d&np”) is, apart from renormalisation, the distribution function of
a Gumbel (extreme value) distribution, so that the limiting distributioXgfis the Gumbel distribution. The
same distribution is observed, for instance, fordlegth of triesas discussed in [8]. |

Let us apply this theorem to the parameteiasxPlateau andMaxLevel. For the maximum size of a plateau
to be< k, we know the generating function to be

1— 22— 22+ 2843 — /(1 — 22 + 2F13) (1 — 4z + 322 + 2F13)
222(1 — 2) '

Hence, in the notation of Lemma 1,
R(z,u) = (1 — 2% + uz®)(1 — 42 4 322 + uz?),

ro(2) = (1 —2)2(1+2)(1 —32) and 7ri(z) = 223(1 — 2)%

It follows thatp = % 0= %8 and so the maximum size of a plateau follows a Gumbel distribution, where the

mean is asymptotically given by

v 3
logsn — logs 2 + log3 2 + ¢ (loggn — logs 2).

Similarly,

1—2—+1—22— 322  82FF3 — 422k +4
222(1 _ Zk+1)

is the generating function fdvlaxLevel. We see that

R(z,u) =1 — 2z — 322 + 8uz® — 4u?2*, 71o(2) =1—22-32%2 and r(z) = 82>
Thereforep = % again,d = % and the mean d¥laxLevel is asymptotically

vy 3
logs n + logs 2 + g3 2 + ¢¥(logg n + logs 2).

5 Unary-binary trees

These trees are defined by the equatibe 1 + 2C + 2C?; they can be obtained from extended binary trees
given by B = y + zB? (z marking internal nodes, marking leaves) by the substitutions

z 1

Z—)l—z’ y—>1—z;

compare e.g. [5].
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Let us now consider the maximal length of a sequence of unary nodes; call the corresponding random
variable X,,. Then the generating function of unary-binary trees where this parametet is obtained from
the substitutions

2(1 — 2k +1) 1— 2k+!
S 1—2z vy 1—2z "~
yielding
1—2— V1 =62+ 22 + 82F+2 — 4,2k+3
Tu(2) = 22(1 — k1) ’
Note that
1—2—+V1—6z+ 22
2z

is the generating function of tHarge Schider numberssee [1].
In the notation of Lemma 1, we have

R(z,u) =1 — 62 + 2% + 82%u — 423, ro(z) =1—62+22 and r(z) = 822

Consequentlyl /p = 3+ 2v/2,§ = 3v/2 — 4 = /2p, and the average of the paramelgy is asymptotically
given by
1 1 1 1 1
BT + i —s (et ).
log(3+2v2)  2logy(3+2v2)  log(3+2v2) 2 log(3+2v2)  2logy(3 +2v2)

Analogously, let the paramet&f, be the maximal length of the chains emanating from the leaves. Then we
have to perform the substitutions

1— Zk+1

Yy — )

1—=2

yielding

1—2—+V1—=6z+ 22+ 4zF+2
2z '

In the notation of Lemma 1, we have
R(z,u) =1 — 62+ 22 +42%u, 719(2) =1—62+2> and ri(z) = 42>

Consequentlyl /p = 3 +2v/2,5 = %, and the average of the parameétgris asymptotically given by
logn 1 ¥ 1 logn 1 )

og(3+2v32)  2log,(312v2)  log3+2v2) 2 (1og(3+2\/§)  2log,(3+2v2)

If we don’t distinguish between leaves and internal nodes, then it amounts t&takg + ~B? as before,
but use the substitutions

z z
z — —
1—2’ y 1—2’
with the result
1—2z—+V1—-2z—322

2z
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Then we are in the “Motzkin-world” (as opposed to the “Sater-world”). Indeed, applying the substitutions
1+k 1+k

z— Z“%;) Yy — 2(1%;) (maximal length of a unary chaid k), we obtain, apart from a factet the

same generating function (and thus the same asymptotics) as for the pafdiandtexel in Motzkin paths. If,

on the other hand, we only consider unary chains emanating from the leaves, we have to use the substitutions

z(l—zprk) . . . .
===, yielding the generating function

z
< =Y

1—2—+1—22—322 +4zF+3
2z ’

In the notation of Lemma 1, this means that
R(z,u) =1—22—32> +42%u, ro(2) =1-22—-32> and ri(z) = 42>
Consequentlyl /p = 3,6 = % and the average of the parameétgris asymptotically given by

v 3
logsn + log3 2 + Y(logs n).
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