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We consider a sequence ofgeometric random variables and interpret the outcome as an urn model. For a given
parametem, we treat several parameters like what is the largest urn containing at least (or erabils, or

how many urns contain at leastballs, etc. Many of these questions have their origin in some computer science

problems. Identifying the underlying distributions as (variations of) the extreme value distribution, we are able to
derive asymptotic equivalents for all (centered or uncentered) moments in a fairly automatic way.
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1 Introduction

Let us consider a sequencerofandom variables (RV), ..., Yy, distributed (independently) according
to the geometric distribution Gedmp). Setq:=1— p, thenP(Y = j) = pg L. If we neglect the order in
which then items arrive, we can think about an urn model, with urns label@d. 1, the probability of
each ball falling into urrj being given bypg .

Various questions arise about the distribution of tHmalls into these urns. There is a large number of
interesting parameters that were studied in the literature, often because of a computer science application.
We will give a few examples. The number of the largest nonempty urn (“the maximum” or “the height”)
was analysed in (SR90), see also (KP93); it is related to a data structure called skip list (see (Pug89)).
This is a list-based data structure that one may use instead of search trees.

Another parameter that appearspimbabilistic counting(FM85) is the smallest index of a nonempty
urn minus 1, or the length of the largest sequence of nonempty urns (starting with urn 1). And, clearly,
a parameter that is between those two, is simply the number of nonempty urns. There are also several
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generalisations around, involving a parametefsometimes denoteld or d); like “how many urns are
there that contain at leastballs.” The instancen= 1 refers then to the number of nonempty urns.

We would also like to emphasize thiateger compositionare closely related to the instange- q= %;
the probability that digit 1 occurs % that digit 2 occurs i§4, etc. The difference is that the sum of the
digits must ben, whereas normally we are interestednirballs (or digits in this case). However, the
differences are minor, and we refer to (HLO1) and the references therein.

In the present paper, we extend, generalise, and rederive many known (and unknown) results, using a
procedure that we will describe in a minute. As applications, we deal with the 3 parameters described (or
variants thereof), under the following assumptions. a) we deal with nonempty urns; b) we deal with urns
that contairexactly mballs and c) we deal with urns that contairieast nballs (which is a generalisation
of a). The intuition is as follows, say, f@=q= %: About 5 balls will go into urn 1, abou§ into urn 2,
etc. For a while, every urn will be nonempty (or contairm balls), then there is a sharp transition, and
then the urns will be empty. So, in the instance b) (exattlyalls in the urn), we can expect to see such
urns only in this (small) transition range.

It is that special situation with the sharp transition that makes the analysis of this paper possible. To
be more precise, we are dealing here with éiereme value distributioand variants thereof. Once a
few technical conditions have been checked, the machinery developed in (HLO1) applies, and we get
asymptotic forms of all the moments, as well as the centered moments and asymptotic distributions.
As it often happens in these type of problems, there are periodic fluctuations (oscillations) involved.
The approximations obtained from the extreme value distribution, together with the Mellin transform,
establish the fluctuations in the form of Fourier series. After several preliminaries have been discussed,
what remains is to a large extent mechanical, and here computer algebra (Maple) comes in.

Several subsections where derivations and reasonings are similar to others, are brief and sketchy, in
order not to make this already long paper longer than necessary.

Note that, in (Kar67), Karlin obtained some interesting results on similar topics, including some non-
geometric RV.

Here is the plan of the paper: Section 2 sets up the general framework; Section 3 is a continuation of
it, dealing with fluctuations. Then we come to the discussion of multiplicities: Section 4 deals with mul-
tiplicity at least 1, Section 5 with the number of distinct values (number of urns). Section 6 is concerned
with multiplicity at leastm, and Section 7 contains a few final remarks.

2 The general setting

We will use the following notations:

~ = asymptotically n— oo,
m := the fixed multiplicity (an integer value)

n" :=np/q,
Q:=1/q,

L:=InQ,

log := logg,

a:=a/L,
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Bwi)i= ({)(pd (1 pd -,

m-1
T():= 3 B,
o) = exp et €7
m-1 _ _
R = 3 (e el
m-1
9(n):= 2 a(i.n),
uq(2)
_ bq
V=T,
(@ = (1-aq)(1-0)...(1~d),
K= (a)e

The following facts will be frequently used:
(1-u"<e ™ wuelol],
(1-u"=e™[1-n/2+0nP)], ue]o1],
(1-uw"=[1-nu+n(n-1)/20*+ O(n®)], ue]o,1/n[,

(?> (0™ = () e;!”“ [14 O(1/m) + O(u) + O(nA)] ,u€ |0, 1], i fixed:

this is the Poisson approximation

For all discrete RVY,, analyzed in this paper, we set
p(j) =P(Mh=1j),  P()=PM<]).

We will either setn = j —logn orn = j — logn*, depending on the situation. After all, there is not much
difference; only a shift by a constant amount(pgq). We will first computef andF such that

p(i) ~f(), P(j)~F(n), n—o,

and, of course,
f(n)=F(Mn)-F(n-1).

Asymptotically, the distribution will be a periodic function of the fractional part ofloghe distribution
P(j) does not converge in the weak sense; it does, however, converge in distribution along subsequences
Ny for which the fractional part of logy, is constant. For instance such subsequences e@s{:ihi/ 2,

ni, Ny integers.
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Next, we must show that
=Y ip(i) ~ 3 n-+logn*)[F(n) —F(n - 1], (2.1)
=1 =1

by computing a suitable rate of convergence. This is related to a uniform integrability condition (see
Loeve (La63, Sec.11.4)).

Finally we will use the following result from Hitczenko and Louchard (HLO1) related to the dominant
part of the moments (the™” sign is related to the moments of the discrete RY.

Lemma 2.1 Let a (discrete) RVbe such thaP(Y, —logn* <n) ~ F(n), where Kn) is the distribution
function of a continuous RV Z with mean,reecond moment4nvariancea? and centered momentg.
Assume that ) is either an extreme-value distribution function or a convergent series of such and that

(2.1) is satisfied. Let
k
O(e) = B(E) = 1+ 5 Lrm = MA(a).

uMs

say, with
k

)\(a)—1+a—202+ s &
—lEFOE Y

Let w,K’s (with or without subscripts) denote periodic functiondagn*, with period1 and with small
(usually of order no more thah06) mean and amplitude. Actually, these functions depend on the frac-
tional part oflogn*: {logn*}.
Then the mean of,)¥s given by
~+o00
E(Y,—logn*) ~ / X[F(X) — F(x—1)]dx+w

=My +w;, with fy=m+1.

More generally, the centered moments p&¥e asymptotically given by + Kk, where

Y k

o) =1+ zzak—!ﬁk - ssinh(%))\(a).

The neglected part is of orddyn® with0 < B < 1.
For instance, we derive

=62 = |0+ 5
o =0" = 12’
Hs = s,

o2 1
Ha = g > T80’
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The moments of;, — logn* are asymptotically given bgi + wi, where the generating function of is

given by

-1
a

o= [~ enf(n)an :1+i‘i‘!'m —¢(a) (2.2)

This leads to

My =+ 5

27
N 1
rr12=mz-i-ml—&-§,
Mg = +§ +m +}'
mg =y 2mz Y

w; andk; will be analyzed in the next section. Note that
O(a) = pla)e ™.
This leads to
flo = My — M,
g = g + 2T — 3MpiMy .
3 The fluctuating components in the moments of Y, — logn*

To analyze the periodic componemnt to be added to the momeng we proceed as in Louchard and
Prodinger (LP04). For instance,

(o]

E(Y,—logn®) ~ E(l)(n) = Z[F(j —logn*) — F(j —logn™ — 1)][j — logn®]. (3.1)
i=

Sety = Q *andG(y) = F(x). Equation (3.1) becomes

8

EY(n):= 5 [G(n/Q') - G(n/Q*)][~log(n/Q))),

=1

the Mellin transform of which is (for a good reference on Mellin transforms, see Flajolet et al. (FGD95)
or Szpankowski (Szp01))
QS

1o 1 (3.2)
and
/y"‘ G(y/Q)][logy]dy= /st X) — F (x—1)]xLdx
Then

Yi(s) =L @(a)|,_ - (3.3)
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The fundamental strip of (3.2) is usually of the fosa (—Cy,0), C; > 0. Set also
YB(S) =L (p(a)|(x=—st Y’S(O) =L

We assume now that all poles ?%Y’{(s) are simple poles, which will be the case in all our examples,
and given bys=0,s=;, with x; :=2lTi/L, | € Z\ {0}. Using

1 Co+ico QS

1
E(>(n) o oiw IO

——Yi(s)n ds -C;<Cp<0,

the asymptotic expression Bf% (n) is obtained by moving the line of integration to the right, for instance
to the lineds = C4 > 0, taking residues into account (with a negative sign). This gives

(l) — —3 —Cy
E@(n) Res{l QSY; ; Res{l o | 7 O(n~%).

The residue a$ = 0 gives of course
_ Y3
=10 _ g0

The other residues lead to 1

W= 3 it e (34)
[

More generally,
E(Yn — logn®)k ~ iy + w,

with 1
we= =Y Yi(x)e 2mloon,
L%

and
Yi(s) =L ¢¥(a)

The residue analysis is similar to the previous one.
To compute the periodic componegtto be added to the centered momggiswve first set

a=—Ls’

my = M +Wq.

We start from

_ > ak & —
a) = 1+k;ﬁm< = 0(0)—

We replacaty by mx + w, leading to

( (p(a "FZ*WK
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But sincep(2lti) = 0 for all| € Z, we have

(P(*LX| )e—ZIru' logn _ 0’
2

and so
- (K) —2ltilogn ak
CCRLCED LA N
=(a)+ ;(p(a—LxQe‘z'””"g” (3.5)
170
_ Z (p(a _ LXI)elem'Iogn.
lez
Finally, we compute
o 00 Gk ) uk
— —amy __ — (11 — R
©p(@) = eo(@)e™™™ = 1+ 5 (P10 = Oe) + 3 7 (3.6)

leading to the (exponential) generating function (GFixfThis leads to

Ko = Wp — W§ — 2w,
K3 = 6r~nfwl + 6m1W§ + ZWE — 3Mpwy — 3MyWo — 3wWiWa -+ Ws.
All algebraic manipulations of this paper will be mechanically performed by Maple. We will give
explicit expressions fgf, K2, Pz andks.

It will appear thaty}(s) are analytic functions (in some domain), depending on classical functions such
as Euler'd” function. But we know thal (s) decreases exponentially towardso:

IF(o+it)| ~ v2mjt|o~Y/2e /2, (3.7)

and all our functions will also decrease exponentially towarts.

4 Multiplicity at least 1

As in Hitczenko and Louchard (HLO1) (where the cg@se 1/2 is analyzed), we can check that, asymp-
totically, the urns become independent.
Set the indicator RV (in the sequel we drop thepecification to simplify the notations):

X; := [valuei appears among theRVs].

* Here we use the indicator function (‘Iverson’s notation’) proposed by Knuth et al. (GKP94).
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4.1 Maximal non-empty urn
The maximal full urn index
M:=sup{i: X =1}

is such that

P(j):=PM<j]=(1-q) ~e .

With n = j —logn, we obtain
P(i) ~F(n),
with
F(n) =exp(—e ).

This is exactly the same behaviour as in ttie case analyzed in Louchard and Prodinger (LP04, Sec-
tion 4.1), where the rate of convergence is already computed. We note that the distribution is concentrated

Prodinger and Mark Daniel Ward

on the range&) = O(1), i. e., in the concentration domajn=logn+ O(1).

From (LP04, Section 5.1), we derive the momentMof logn:

m oYy, 1
ml—L+2,
~7i+i
=5z 12
~ 23
Mz = L3

wherey is Euler's gamma constant. Let us now turn to the fluctuating components. We havg higee
I(1—a). The fundamental strip fais 0(s) € (—1,0). First of all, (3.3) and (3.4) lead to

Wy = _% Z r(XI)elenilogn.
10

Next we obtain

K2172M7W%vL 2

LW 3 TO0uxe 2

[
Wy Y

ka=—6(T5+5) 3 TG - f;;o r(x)W?(x e 2 ioon

_ 33 Z r(X|)[IJ(17XI)e—2|T[i|0gn+2W31+ (GVZ_T[Z)WJ_

L3 &, 212

6yws
+L,

wherey is the digamma function (logarithmic derivative of theunction) andy(1,x) is the trigamma

function.
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4.2 Number of distinct values

This is actually a measure of distinctness. et 2 Xi.

We can now proceed as in Louchard and Prodlnger (LPO4, Section 5.8). We don't consider the rate of
convergence here: this will be computed in Section 6.1, in a more general setting. Note that

P(X = 0) = (1 pd 1) ~ P — g

if we set, as alway$* = np/q.
This leads, for the moments #f— logn*, to

=y 1
M=1 "%
Wy =B,

2 =log2,

Ps = —3log2+2log3
K2 =PB12— P11,
K3 =2B13—3P12+ P11,

with
Blk __ = ;r XI —2ITnIog (n*k)

Note the presence &fin the exponent. Note also that the variance has here a periodic component, contrari-
wise to the cas@ = 1: We have thak,(x) = B1.1(x+10g2) —B1.1(x), and this is zero fo@ = 2, because
of the periodicity 1. The first two moments are given in Archibald, Knopfmacher and Prodinger (AKP03);
the cancellation fop=q= % was noticed therein, see also (Pro04). In (Kar67), Karlin mentions that the
mean ofX “could oscillate irregularly,” but does not give an expression, even in the geometric case. In his
Theorem 1, he provides the logdominant term of£(X), and in Section 8ll, he givesjl, i3, mentioning
that “the distribution oiX is difficult to identify.”

Actually, the asymptotic distribution of can be adapted from Hitczenko and Louchard (HLO1). We
obtain the following result:

Theorem 4.1 Setn := j —logn* and
_eln o e Lin-)
Yi(n):=¢e* 1-¢e° .
nl ]

Then, with je Z andn = O(1),

+j
& r|+1u 1ee(n)

P(X=i)~f(ﬂ)=;q’ i(n—u+1e r;@ﬂ e

rJ>2 u

[oe]

P(X<])~F(n), with F(n):= ,Z)f(n —i).
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4.3 First empty urn

SetE :=inf{i : X; = 0}.
Again, we start from (LP04, Section 4.8). Setting

Au(j)=[1-(1-pdHM <1,

we obtainP(j) ~ 1—A¢(j). We have

n=j—logn’,
p(j) ~ (1—pgd 1) 'A(j - 1),

fes]

Wa(n) i= rL[l exp(—e -9 ||

K=
F(n) :=1-Y2(n),

The rate of convergence is fully analyzed in (LP04) in the gasel/2. The analysis is similar here.
Also, in this casep = 1/2, from (LP04, Section 5.9.1), we first define the entire funchige) which is
the analytic continuation of

(—1)v4)

5 S

i>1

wherev(j) denotes the number of ones in the binary representatignTiis gives

N(0) =

N'(0) = — 4874506 .

N”(0) = .8433214..
N"(0) = — 8683385 .

We obtain the moments & — logn* for p=1/2:

~ _Y+N(© 1

v 1( 6N'(0)%+12 —6N"(0)) +

Mo = L2

s = (2N'(0)3 4 3N"(0)N'(0) + N""(0) +

1

Tza

2((3)
L3 -

Let us now turn to the fluctuating components:

1 . “
== 3 N(X)T (xi)e 2mloon,
L%
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2=~ 5 3 [Ny N0+ N )+ NOx i) e 274
Next we obtain
K3 = I;} {3LU(1,X| IN(X1)/L3 + W(xi) BN (xi)wa /L2 + 6N’ (x1) /L + BN(x1) (y+N'(0)) /L]

+3N(Xi )lJJZ(X| )/L3 + 3(2(N/(0) +Y)N'(x1) +N"(x ))/L3}|-(XI )e72lrli|ogn*
~+ 6wy ;N'(Xl)r(xl)e—zmlogn*/l_z
|

_ % (6% + 12yN(0) — BN" (0) + L2 + 12) — ewa (Y+N'(0)) — 4w,

In the casep # 1/2, we follow the lines of Sections 2,3, and we define (we have no explicit form here)

0(@) = [ &y =—a [ &MF(n)dn,

—00

This leads to
- 1
m = E +¢/(0)7

)

_ ¢(_LX|) —2lTi logn*
Wy = |;)7LXI e
o= 55— #'(02+9"(0),
fls = 2¢"(0)° — 3¢"(0)¢'(0) +¢"(0),
_ O'(=Lx1) , ¢(=Lx) , ,9(=Lx)| ~2iritogn*
" ;0{2 T }e T
_ o [a7EX) L0 (k) | (9=
W3 = I; |:~J LX| +9 LX| +6 L2X|2

(LX) | J9(=LX) | ~0(=LX) | aritogn*
T e Pog }e i

Ko = —Wy — 2¢/(0)wy — W5 + Wy,
K3 = %Wl - %Wz +wsz+ 3¢’ (0)wy + 3W% + 6¢'(O)2W1
+ 60’ (0)wW? — 30" (0)wy — 3¢ (0)Wa + 23 — Bwiwa.

)

Alternatively, we could start from

o) = /oo e f(n)dn.

0
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5 Multiplicity exactly m
We consider fixean= O(1). Set

Xi(n) := [valuei appears among theGEOM(p) RVs with multiplicity m].
ThenP[X;(n) = 1] = B(m, j), with

B(mj) = ) (pel (3 pf 5

We immediately see that the dominant range is givet fylogn+ O(1). To the left and the right of this
range,P[X;(n) = 1] ~ 0. Within and to the right of this rang&][X;(n) = 1] is asymptotically equivalent
to a Poisson distribution: 1

PIXj(n) = 1] ~ (') "exp(—ng)). 5.1)

Setting agaim := j —logn*, we deriveP[X;(n) = 1] ~ g(m,n), with
_Lm
o o€
g(mn) :=exp(—e") —
5.1 Number of distinct values
SetX(n) := E Xi(n). We must first check the asymptotic independency of the urns. Let us consider
i=1

Mn(2) = E(ZX™). We are interested in the behaviourTdf(z) for complexz € Dg(1) = {t | [t — 1| <€},
wheree is a small fixed positive real number. We choese 0 such that :=log(1+¢€) < 1.

Theorem 5.1 We have

00

_ _i  lymo—n*q i ol ymo—n*q c—1 _
I‘In(z)_ﬂ[@ por (n*q)Me )+Zm! (n*q)Me +0(n“"%), n—oo,

uniformly for ze Dg(1), whereO < ¢ = log(1+¢) < 1.

Proof
We use an urn model, as in Sevastyanov and Chistyakov (SC64) and Chistyakov (Chi67), and the Pois-
sonization method (see, for instance Jacquet and Szpankowski (JS98) for a general survey). In the above
formulation, we have &ixednumbem of geometric random variables, each corresponding to a ball. The
value of each RV denotes the bin into which the ball is placed. For instanGesiB, then the first ball is
placed into the third bin.

In order to utilize the Poissonization method, instead of usifigeal number of balls, we usH balls,
whereN is a Poisson random variable wii{(N) = 1. It follows that the urns arendependentand the
number of balls in urrd is a Poisson random variable with parametay. We use a “” to denote
that we are working in the Poissonized model. For instaXgg;) denotes thdth GEOM(p) RV in
the Poissonized model, i.€X (1) corresponds t&(n). It follows that urnl has exactlym balls with

probability%(T*q')”‘e*r*q'. So the generating function &f (1) is

E(Z>N<I(T)) — (1_ %(T*ql)me—l'*ql) +Z$(T*q|)me—ﬁql =14+ (Z— 1)$(T*q|)me—ﬁql.



Distinct values in sequences of random variables 13
We haveX (1) = ¥, X (1), and thus
G(1,2) := E(Z*V) = E(ZX ().

Since the urns are independent in the Poissonized modelRzeX (V) = 1, E(24(Y). Thus

[e4]

— mg-Tdf
G(1,2) ||1[1+(Z 1) (q) . (5.2)

We writet = Ré' for realR > 0 and—Tt< t < 1t Thus|t| = R. We denote the linear cone containing all
Twith —1/4 <t <1/4 asSys = {1 = Ré' | —1/4 <t < 1/4}. Now we derive asymptotics about the
growth of |G(T,2)| for T € Syy4. Our estimates are valishiformlyfor ze Dg(1) = {t | [t — 1| <¢&}. We
encapsulate our results in the following lemma.

Lemma 5.2 For T € Syy4, there exist reals B- 0, Ry > 0, and0 < ¢ < 1, such that ifit] = R> Ry then
G(1,2)| < B[t

uniformly for ze Dg(1).
Proof We first considel > 1+ logR. We have

EFO) = ] |i+e-1 5 @d)me ]
I>1+logR |>1+IogR

[ 1 B
< 1 [r+e(npd tme o]

1
= ] [t+e s (tlpd)me 0]

= Xp(I iRIn [1+£n1]!(|rpd)me—ﬂ(r)pd]>
>log

<(§Xp<I iR[Sr;ﬂﬂpd)meD(T)pﬂ)
>log -

where the inequality holds since(lid-x) < x for realx. We note that-(t) > 0 sincet € Sy4. Thus
e 0Opd <1 |t follows that

A Loam T (g
EEO) <exp(am!<|r|p> 3 @)

ol )

(s ) sinceq®9R=R1=|7|!
1)

1>1+logR

I /\

3\|—\

o1
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Now we considel < logR. We have

M ‘E(ZX'(T))

I<logR

< “ (1+8) < (1+8)|09R: Rlog(1+s) _ |.[|C'
1<logR

Combining these results, we ha¥@&(t,z)| = O(1)|1]® = O(|t|°) uniformly for ze€ D¢(1). This completes
the proof of the lemma. [ |

Now we return to the proof of Theorem 5.1. The lemma we just completed shows that condition (I) holds
for Theorem 10.3 of (Szp01). It follows by Theorem 10.4 of (Szp01) that condition (O) holds too, namely:
FOrt ¢ Spya, there existd anda < 1 such thatG(t,2)e’| < Aexp(a|t|) for [t] > Ry.

So the assumptions of Theorem 10.3 of (Szp01) are satisfied; therefore, we can depoissonize our results.
In other words[1s(2) andG(t, 2z) have the same asymptotics. More precisely,

Mn(2) = G(n,2) + O(n°1).

Substitutingt = n within (5.2), we see that

0

_ 1 « l\mao—n*d 1 « l\ma—n*d
G(n,z)—l_![(l—m!(n q)"e )—i—zﬂ(n q)"e .
|=
and we note that & ¢ < 1, so this completes the proof of Theorem 5.1. [ |

Theorem 5.1 confirms the asymptotic independence assumption.
The moments can be derived as follows. We obtain, setting®,

IN(Mp) ~ S(s) In[1+ (e—1)B(m,1)]

1
8 IM 8

()" He-1V

: , with

3

~—

[B(

<
’
M s

[|
i

Let us first check that we can replace the Binomial by a Poisson distribution (see (5.1)) by computing a
suitable rate of convergence. We will consider three ranges. /2218 < 1.

e Forj < Blogn*, B(m, j)¥is small. Indeed
k
B(m, j)k < [n*mexp(—n* 1‘B)/m!} .
e ForBlogn* < j < 2logn* we have

B(M, j)*— g(m.n)* ~ [g(m,n)[L+ 0(1/n*) + O(1/Q1) + Oo(n* /Q%)]]“ — g(m,n)*
= 0(1/n* 271,
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e Forj=2logn*+x, x> 0, we have

B(m, ))* —g(mn)* ~ |g(m.n)[1+ O(1/n") + O(1/n*?) + O(n" /n* 4)]} . g(mn)*
_ O[l/(n* QOX)]k/n*’

as _
g(i,n) = O[1/(n"Q")'].
Now we must bound

‘ Z[B(ma j)k_g(mvn)k]
I

which leads immediately to(1/n*?#-1-¢), ¢ small > 0.
SoV, is given by a harmonic sum, which we will compute by the Mellin transformySefQ—" and

g(y) == [g(m.n)]¥,

the Mellin transform of which is

y I (mk+s)
g9 (S) = kmk+s(m_|)k'
This leads to
. Q®
g (S) 1_7(}’

with fundamental strifi] (s) € (—mk 0). We obtain, by residues,

Vi ~ B; +Bi(logn),

with
(km—1)!
Bk = m|k|_kkm ’
B — FO0 +mK) —amilog(nk
; Lkmk ml ’

Note again the presence loin the exponent.
The centered moments ¥fcan be obtained by analyzing

S(9) := exp(S(s) —sW);
and finally, the moments are given by

- 817
=B,
P2 =B1—Bg,
Ps =B1—3B2+ 2Bg3,
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K2 = B1— P2,
K3 = B1— 32+ 2B3.

The asymptotic distribution o can be derived from Louchard (Lou03). This leads with

Wa( ﬂl g(mn—j)l,

W) = [1-g(mn+]j
4(n) J]:L[ g(m,n+ j)]

to the following result.
Theorem 5.3 Sety(n*) :=logn* — |logn*], then

[e4]

PX=u+1)~ 5 Ws(l-y(n)),

|=—o00

with

u

Ws(n) =Wan-1%a(n) 3 []{gmn+w) /[1-gmn-+w)] .

W1 >Wo>->Wy>0i=
Note that, contrariwise to the previous section, the)Rl hereO(1) in the sense that we do not have to
normalize by logn*.
5.2 Maximal non-empty urn
We derive, by asymptotic urn independence,

This leads to

p(j) ~ f(n) =g(mn)Wa(n+1),
P(j) ~F(n) =WY4(n+1).

We have here product forms: the rate of convergence for this kind of asymptotics is fully detailed in
Louchard and Prodinger (LP04). We can now proceed as in Section 4.3.

5.3 First full urn

SetE :=inf{i: X =1}.

Note the difference with Section 4.3, where we were concerned by the first empty urn; that question
would not make sense here since the first ‘empty’ yémf elements) would be urn 1 with very high
probability.
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We obtain

-1

pLi) ~ B(m. ) [ 1 B(m ).

P(i) ~1-[]11-B(m)
This leads to

p(j) ~ f(n) =Ws(n),
P()~F()=1-[][1—9g(mn—j)].
(j) n JEL[ g(mn—j)]

We can now proceed as in Section 4.3. We don't give more details here.

6 Multiplicity at least m
We again consider fixegh= O(1). Set

Xi(n) := [valuei appears among theGEOM(p) RV with multiplicity at leastm].

We have
m-1

P[Xj(n) =01 =T(j) = } B(i]).
! 2
Again, in the range given by > logn* we can use the Poisson approximation:
with
H mt 1 PPN *
R = 3 5(va) expl—n'g).

Setting agaim := j —logn*, we deriveP[X;(n) = 1] ~ 1—g(n) with

6.1 Number of distinct values
SetX(n) := E Xi(n). We must first check the asymptotic independency of the urns. Let us consider
i=1

Mn(2) = E(ZX(M). We are again interested in the behaviouFigfz) for complexze Dg(1) = {t | [t — 1] <
€}, wheree is a small fixed positive real number. We choese 0 such that :=log(1+¢) < 1.
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Theorem 6.1 We have

[

Mn(2) ~ H[R(I,n)Jrz(l—R(l,n))], n— oo.

=
uniformly for ze D¢(1), whereO < c = log(1+¢€) < 1.

Proof

We again use the urn model. As before, we replacdixieelnumbem of balls withN balls, whereN is a
Poisson random variable witf(N) = 1. Thus, the urns aredependentand the number of balls in uin
is a Poisson random variable with parametef. Again we use a™” to denote the Poissonized model.

It follows that urnl has exactly balls with probability (t*qf )ie T4 . So the generating function &f ()
is

E(ZY0) =R(I,T) +z(1—R(1,T)) = 1+ (z— 1)(1—R(I,1)).
We haveX (1) = ¥, X (1), and thus

G(1,2) := E(ZXV) = E(Z X W),
Since the urns are independent in the Poissonized modelEméXl(T)) = |°-°| ]E(z>~<4 (T))_ Thus
=1

0

G(1,2) = rl[1+(z— 1(1-R(,1))]. (6.2)
|=

We again writet = Ré! for realR> 0 and—mt <t < 1 Thus|t| = R. We again consider the linear
conesy s = {1 = Re' | — /4 <t < 1/4}. Now we derive asymptotics about the growth@ft, z)| for

T € Sy4. Our estimates are valighiformlyfor z€ De(1) = {t | [t — 1| < €}. We encapsulate our results
in the following lemma.

Lemma 6.2 For T € Syy4, there exist reals B- 0, Ry > 0, and0 < ¢ < 1, such that ifitf] = R> Ry then
G(1,2)| < B[t

uniformly for ze Dg(1).
Proof We first considet > 1+ logR. We have

E@O)= [ |1+ )@-R(1,D)
1>1+logR I>1+logR
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exp(bi In {1+si i1!(|r|pq‘)ie‘D(T)pdD

>logR I=m

where the inequality holds since(l-x) < x for realx. We note that-[(t) > 0 sincet € Sy4. Thus
e 0@pd < 1. |tfollows that

N ECE (e 5 5<T|p>‘l>gg;q‘>')
< exp(eﬁmill 1_piqi) sinceq®9R =R = |7/
< exp(lfqﬁm il!pi> since ¥(1—q) < 1/(1-q)
< exp(%q ep)
—0(1).

Now we considel < logR. We have

’IE(ZX'(T))

< rl (1_|_£) < (1+E)|OgR: Rlog(lJrs) — |T|C.
I<logR I<logR

Combining these results, we ha&(t,z)| = O(1)|1]° = O(|t|°) uniformly for z€ D¢(1). This completes
the proof of the lemma. |

Now we return to the proof of Theorem 6.1. The lemma we just completed shows that condition (I) holds
for Theorem 10.3 of (Szp01). It follows by Theorem 10.4 of (Szp01) that condition (O) holds too, namely:
FOrt ¢ Syya, there existdA anda < 1 such thatG(t,2)e'| < Aexp(a|t|) for [t] > Ry.

So the assumptions of Theorem 10.3 of (Szp01) are satisfied; therefore, we can depoissonize our results.
In other words[1,(z) andG(t,z) have the same asymptotics. More precisely,

Mn(2) = G(n,2) + O(n°1).

Substitutingt = n within (6.2), we see that

[<4]

G(n,z) = l_l [R(I,n) +2z(1—R(I,n))],

and we note that & ¢ < 1, so this completes the proof of Theorem 6.1. [ |
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Theorem 6.1 confirms the asymptotic independence assumption.
Now with asymptotic independence of the urns representing each integer,

E(e"X) ~ exp{iln (1+ (6" — 1)(1—T(j)))} = expLi (71|)|+1 (@ —1)'v |,
= =

with

8

Vii= S (1-T()"

We obtain

First of all, let us check that, for large T (), as a function of, is an honest distribution function in the
sense that it is monotonous jnConsideringj as a continuous variable, we obtain

)=—L ZOB )i—n*gl)/(1—pdt).

But to the left of the concentration domain’g! > m, so thatT’(j) > 0. In and to the right of the
concentration domain, the Poisson approximation leads,Wwithe 1", to

m-1

Z} e MN/il(i—N) = —e A"/ (m=1)! <0

and againT’(j) > 0. Settingn = j —log(n*), this leads to
T(j)*~G(n) :=g(n)*,

andS is the mean of the RV with distribution functidi( j)%, minus 1 (as the sum starts herg at 1).
Now we need a rate of convergence. This is computed as follows. We will consider three ranges. Let
1/2<B< 1.

e Forj < Blogn*, T(j)*is small. Indeed

T() < [ mexp(—n*1-#) |
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e ForBlogn* < j < 2logn* we have

m-1 k m-1 k
TF-gm = |3 B0.0)| - |3 o)
[Z)g J[L+0(1/n") + O(1/Q)) + O Qz‘] [209 ]
— ko (1/n B,
e Forj=2logn*+x, x>0, we have

() — gk~ [g(o,n>[1+o<n*/<n*4Q2X>>]

+ Zg )14 0(1/n*) + O(1/n*2) + o(n* /n*%)] } {Z}g }
~mkO[L/(m Q)] /n*

as

g(i,n) = O[(1/(n" Q).

We can then proceed as in Section 5.1.
Now we return to the main problem: compute the mean of the distribution function

T())*~G(n) :=gn)~.
e Let us first consider the cage= 1. This leads for = 0 to

61(00) :/:)e"‘xg’(o,x)dx: r1-d), O()<L.

Next, we derive
m-1

() = [ €5 dlx)dx= —ame)

with

Ml(a):i; Li’!a, O(a) < L.

This leads to

®(a) = —My(a)(e" 1) +T(1-a)(e" - 1)/a.

Proceeding as in Section 3 and as in the trie case (see (LP04)) we obtain

1
S ~ logn* + % -3~ M1(0) +Br1+ O(1/n)
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with M1(0) = Hpp_1/L and

=g N( +X|) 2imilogn* erXI
— — gn* _ 72ITqugn
Bri= L;[ -T(x)|e L;X| ;

by induction, which is exactly the expression given in (AKP03).
e Fork =2, we derive similarly

¢1(0) =2°T (1-@),
d2(a) = —aMz(a),

m 1m-1 Zar +V CI)
=L % 2 VA0
This leads to 1
S ~ logn* +I092+%f§f|\/|z( ) +Br2+ O(1/n),
with

Br2= ; [f Mz(a)\az_xl *Z_X'F(XI)/L] g 2milogn*
10

m-am-1 +V—|—X| g-2ilog(2n)

23,2 S

e For generak we finally obtain

1
S~ logn* +Iogk+%f§f|\/lk( )+ Bk + O(1/n),
with
m-1 m-1 (1_|_ +ik—a)
Mk(a) z Z [[|1+ +Ik?é0]] Kiit+ikj il ]
i1=0 ix=0 L K
Bik=— mzl mzlr +|k+X|) ~2rilog(k)
7 |;)i1 o &0 Kt w'l' WL

Note again the presencelofn the exponent.

This gives

Vi ~logn*—1/2+y/L+B +C +f, with

B = IZ (L)(_l)k+1|ogk,

k=2
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=3 (1) 0B

K=1
L/
C= —1)* LMy (0
= 3 (1) M)
and, finally
oX )Hl o | - (_l)IJrl a |
E(e"") = exp{ (logn* —1/2+y/L) +; (e*—1) B|+z i (" —1)'B
=1

& (=Yt g
+|;|7(e —1)'C|+O(l/n)}

From this, we derive

o 1\l4+1 [+ 1+1
Op(a) = exp[ ( 1|) (e"-1)'B + > ( I) (e -1)'p
1= =1
e RN
+ 3 (€ = 1'C— a(~M(0) + Bra)
=1
and the moments of —logn* are given by
_ 1
m = %—E—M1(0)7
- Bl,la

P =log2+ M1(0) — M2(0),

Pz = —3log 2+ 2log 3— M1(0) + 3M2(0) — 2M3(0),
K2 =B1,2—Bu1,

K3 = B11—3P12+ P13

The quantitiesiy, wy, Hz are given in Archibald, Knopfmacher and Prodinger (AKP03). Since they look
somehow different, here is a

Direct proof that the two expressions for the variance coincide.
What is denotegi; here, comes out in (AKP03) as

oo 5 (1 s L aa () (Ve

2 ( 1)h71 1m711 2J Dy .
ey gl )P

h>1

So we are left to prove that

S (1)) 225 () 5 (We
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(—ph-1 mlg <21> -1
+2y 278 = 5 o L Hy g,
h§1 h(Q"—1) Z 2j\ ] i,Jz=o itj! m-1

where the dashed sum means that the fesn) = 0 has to be excluded. If we take the diagonal out of the
sum with the dash, we are left to prove:

S () 5 () g (Ve=

(-t (i+i-1' 5,1
+ _ = — ~— 72 i + —Hm-1
hgl h(Qh_ 1) 0<i<j<m IIJI 2 "

or

(71)i <i _ > ( ) | min(m-1,i) (*1)j(i+j 71)!
2i@-1pm 1 ZQ' 2 I D
(-1) i+j-D' i, 1
- T~ AN — 72 ! + —Hm_ )
i;U(Q'—l) ocifemy ! 2 ™t
notice that the right side does not depend@rNow we evaluate one appearing sum for> i > 1:

min(m— )( ) +J— 1

Z =g ,2) '('—J. i
PADIGE
i

i
by Vandermonde’s convolution. Thus we are left to prove that

(-1 (H-D)(i-1) o (D) D+ - 1)
inn( >( Dms) 2001 2, =
) = — lej‘i‘lel

|>m 0<i<j<m Il]l 2

Vi+j—10 1

We will achieve that by proving that both sides are actually zero!
We treat the right side by induction on, the instancen = 1 being clear. The induction step amounts
to prove that

0<i<m

(i+m-1)! oi-m _ i
i'mt! 2m

Y

or .
(i+m-1)!

—i _ om-1
i!(m—l)!2 Z0

0<i<m
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which is the “unexpected” sum (5.20) in (GKP94).
Now we turn to the left side; we need to show thatifor m,

() ()5 1

=1

(m-0)(-2)-5,(3)()

This follows from Euler’s identity (GKP94, ex. 28, p. 244), or can simply be proved by induction.
This finishes the proof.
Remark. We learn from this computation that the expressiorpfocanstill be simplified:
- 1 (2i—1)!,_ 5

1<<m

or

Now we continue after this intermezzo.— The asymptotic distributioiX a§ given by the following

result:
Theorem 6.3 Setn := j —logn* and

6.2 Maximal non-empty urn

6.2.1 General multiplicity m
We have here

and this leads to

(6.3)
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with

[oe]

W7(n) = _Ug(n+i)-

Now we could proceed as in Section 4.3.

6.2.2 Particular case m=2

In the following we use a different approach and work out the detailsrfer 2. The reason for this
restriction is that the results are more appealing in this case; Euler’s partition identity allows to expand a
product into a sum, and there is nothing equivalennfias 2. This can be compared with the analysis in
(FM85) and the analysis in (KPS96); the latter does not have the nice explicit S¢sles

We can computé®(j) by noticing that there are sonkeelements which fall into urns numberedj,
but are alone in their urn, and the remainimg k elements which are in urns with numbetsj, but no
further restrictions. Thus

n .
Pl)=FX <] = 5 (k)<1 I S S
k=0 J<AL<- <Ak
N /n
_ Z 1 q n kk| q]k z q)\1+"'+)\k
o \K 0<A <<k

(1-g)" "k p Q"‘[Zkllg(lﬂd)

=]
>

o

1 n kk| kA
@) KP'g (@’

Il

X

>
=3 73 73 2
vvv

il
o
=~

by one of Euler’s partition identities.
After these preliminaries, we consider the asymptotic form. We have

N (g i@ ni .
SR I
Settingn = j — logn, we obtain
P(j) ~F(n),
with ©
F(n) = i p(ug):e"-”” exp(—e ). (6.5)

Let us first check the equivalence of (6.5) wita(n) given by

|_| exp( L(A+k) ) {1+e"-<ﬁ+k>] ,
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with D
n=j—logn* :n—loga.

This leads to
Wr(n) = - exp(—e pgt) [1+e Mpgt
kI:ll ( ) [ } (6.6)

=exp(e™) ﬁ [14— e tn pcf‘l} .

k=1

Now, again by Euler’s identity, (6.5) gives

F(n) = expl—e M) [] [1+e o]

which is equivalent to (6.6).
Let us now compute the rate of convergence. We must b¢Rid — F(n)|. Let0< B < 1. We will
consider three ranges

e Forj < Blogn, P(j) is small. Indeed
o Au(u-1)/2U
P(j) < exp(—nt Py kS T P g
(1) <exp(—n""")/ u; gy ¢

The sum is bounded by

w 2/2 U
q*/%n,
2
which we can estimate by the Euler—Maclaurin formula (or by the Mellin transform). The sum is
asymptotically given by
exp(Llog?n/2)+/2m/L.
Note that the maximum of the quadratic form in the exponent occurs-atlogn.

e ForBlogn < j < 2logn, we setd:= e 1. Note that n < & < n*~P.
Now we use the “sum splitting technique.” Set n'/4.

1. truncating the sum in (6.4) toleads to an erro;:

n
E1SZ

qu(ufl)/z
K

1/2
dle® < g tn / Ei1/K,

where
E11 = Olexp(L(1— B)nY*logn) exp(—n*P)], if 5=n>"P, asr > u* = (1—B)logn,
Ei1= O(l) if 6=1,
E11 = O(exp(—LnY*logn)), if 5= 1/n.



Guy Louchard, Helmut Prodinger and Mark Daniel Ward

2. replacingﬁ in the truncated sum by 1 leads to a relative efraf /n (by Stirling), which

leads to an erroE;:
r qu(u-1)/2
E2< ) T < 3e~du?/n.
u=1

This gives

r qu2/2 o

Er< Y —— (0% "W/n, if&=n'"7.
u=1

Now we use the standard saddle point technique: the saddle point is
u* = (1—o0)logn+2/(L(1—o0)logn) + O(1/log®n),
and this leads to
E, < expL/2(1— B)%(log?n+ O(loglogn))jle ™ * /(Kn), if 5= n*"B,
E;=0(1/n), ifd=1,
E»=0(1/n?), ifd=1/n,

3. replacing(1— g')"1in the truncated sum by expe ") leads to a relative error
nofl = 82 /n which gives an erroks:

r qu(u—l)/z U2 5
Es< § ——88% 9/n.
Z K

This gives
rou?/2

q (1-0)(U+2) o0 /) e 5 _ 10
E3<y ——n e /n if d=n"°,
& K

and this leads to

Es < explL/2(1— B)%(log?n+ O(logn))Je ™ " /(Kn), if 5=n'"P,
Es=0(1/n), if d=1,
Es= 0(1/n), if 3=1/n.

4. completing the sum in (6.5) leads to an eigr

N Qu(u-1)/2nu

i<y %éue‘é,

which is analyzed ag;.
e Forj=2logn+x, x>0, we haved = 1/(nQ"). Set agair = n'/4.
1. truncating the sum in (6.4) toleads to an erro;:

E, < eanl/z/ZefL(logn+x)n1/4/K’
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2. replacingﬁ!_u»I in the truncated sum by 1 leads to an eiggr

E2 = 0(1/(n*QY)),
3. replacing1—qg/)™ 1 in the truncated sum by ekpe ") leads to a an errdgs:
= O[1/(n*Q*)],
4. completing the sum in (6.5) leads to an eiegr

n (u—1)/2
q" [
Es<§ ———d"
UZI’ K

which is analyzed ag;.

Now we can bound the difference between the momensarid the moments based Bitn ):

*(1P(G) — PG — 1)) - [Fm)—Fm—lﬂ)‘
J
< 2{O«Blogn*)k“exp(—nl“”))

+ (2logn*)*10o(1/n) +O( Z} 2logn* +x)*Q*/n )]

=0(1/n"®),

whereg is any small positive real number. Now we turn to the moments. We obtain

with
6:=a/L, O(a)<Ll, V(u):=

We recognize the trie expression in the first part. Note alsojtf@t= 1 as it should. The second part of
¢(a) leads to

oo

@®(0) =—(e"-1) ZlV(u)F(ufd)/L.

Setd = —s, s= 0 +1it, 0 > 0. Using (3.7)@:(a)| is bounded by

0 -1)/2
O( Z qu(u )/ p! |t|u+01/zemt|/2> -0 (eLlogz(M)/Z) |t|071/2e7r[\t|/2
u=1 (q)‘x’
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which is exponentially decreasing. Now we set

Ci:= iV(u)F(u),
u=1

Coi= 3 V(W)
u=1
C3 .= §V(u)r(u)lp(1, u),

u=1
0

Cy:= uzlwu)r(u)qﬂ(u).
This leads to
=(y—-Cy)/L,
(T8/6 4y +2Cp) /L2,
(2(3) +TPy/2+Y® —3C3 — 3Ca) /L°,
m = m1+1/2,
Mp = my + 1/3+ (T8/6+ Y2+ 2C5) /L2,
Mg = My + 1/4+4 (T8/4+3y%/2+3C,) /L2 + (22(3) + T2y/2+y° — 3C3 — 3Cy) /L3,
0% = (T°/6+y*+2C,) /L —
Mg = 2% + (—3myy? — m1¢/2— 6myCo) /L + (2((3) + TPy/2 4 y* — 3C3 — 3Ca) /L3,
fio = (TP/64 Y2+ 2C,) /L2 —mé 4+ 1/12,
s = Ha.

Let us now turn to the fluctuating components. The fundamental stripifdrl (s) € (—1,0). First of

all, (3.3) and (3.4) lead to

Wy = — I;[ (X +ZV U+XI)} 2IT|iIogn/L_
0

Equations (3.5) and (3.6) lead, after the usual simplifications necessary to help Maple, to

Kz—2; (X)W x|+zv P (U X)W(u+x1)] & 2700 /L2 = 2mywy — w2,

ka= 3 [ =3 (X)WL x) — 37 (X)W(K1) — 67 (X W)L (we +my)
170

0

+ Y (VT U+ X)WL U+ Xi) — 6V (Ul (u+x)W(u+Xi)L(my +wy)

u=1

=BV (U X)W (u+ ) [ e 2o L2
+ [AW3L2 4 12mPw L2 4 12mpw2 L2 — TPwy — ByPwy — 12Cowy]/(2L2).
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6.3 First empty urn
SetE :=inf{i : X; = 1}. We obtain

-1

PU) ~T() [ - TG)

j
(i) ~ 1= []2 =T G
This leads to

p(i) ~ f(n) = WYe(n),
P(j) ~F(n) =1-¥s(n),

with

0

Ws(n) :=[1(1—g(n—i)).
]
We proceed now exactly as in Section 4.3 and we derive all moments. We recognize here the splitting
process arising iprobabilistic counting see Kirschenhofer, Prodinger and Szpankowski (KPS96). The
quantitiesmy, fip andw; are given in their paper. We don’t give more details in this subsection.

7 Conclusion

If we compare the approach in this paper with other ones that appeared previously, then we can notice
the following. Traditionally, one would stay with exact enumerations as long as possible, and only at a
late stage move to asymptotics. Doing this, one would, in terms of asymptotics, carry many unimportant
contributions around, which makes the computations quite heavy, especially when it comes to higher mo-
ments. Here, however, approximations are carried out as early as possible, and this allows for streamlined
(and often automatic) computations of the higher moments.

One of the referees asked the question: can this work be extended to other distributions under conditions
of exponentially decreasing tails? Indeed, this can be done, but at the expense of less explicit formulee.
Another interesting problems would be to consider Carlitz compositions (where two successive parts are
different) and other Markov chains (see (LP04)). This will be the object of future work.
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