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This paper deals with sequences a,a,a; - - - of symbols 0 and 1 with the property that they
contain no arbitrary long blocks of the form aq,., - - - a;,, = ww. The behaviour of this ciass of
sequences with respect to some operations is examined. Especially the following is shown: Let
be a®=aq, a"*V=(1/i) Ti_, a{™, then there exists a sequence without arbitrary long adjacent
identical blocks such that no lim,_, a{™ exists. Let be a€(0,1), then there exists such a

sequence with lim,_, . a{"” =a. Furthermore a class of sequences appearing in computer
graphics is considered.

1. Introduction

In this section first the basic definitions are given, followed by a short survey of
the remaining sections.

An alphabet 3, is a finite nonempty set, the elements of 3 are called symbols.
3* denotes the free monoid gererated by X. The elements of 3* are called words.
The unit in 3* is denoted by &. The length of a word we X* is denoted by |w| and
isOif w=eand nif w=a,--a, a3

The mirror image of a word we 3* is denoted by w® and is ¢ if w=¢ and
a, -a,if w=a, --a, aq€el.

An infinite sequence a2,a,a;- -+, a; € X is called X-sequence.

A substitution is a mapping 7: 3T — B(Z¥) such that the following conditions
hold: 7(¢) = ¢ and for each a €3, there exists L,< 3%, such that 7(a, - a,)=
L, L, forall a,---a,e3T. Let 7 be a substitution such that for each ae 3,
e¢ L, holds. Then to each 3;-sequence w=a,a,a;' - corresponds the set
7(w) ={w,wow; - - - | w;e L, } of 3,-sequences.

Let w=a,a,a;* -+ be a S-sequence, a€3, keN, then n{’(k) d snotes the
number of symbols a in a, - a,.

A word x e 3* is called subword of a word we 3* (of a 3-sequence ), if there
are words y, ze3* (a word ye3* and a 3-sequence m), such that w=yxz
(w=yxn).

For £={0,1}, 7(0)=1, 7(1)=0, 7(w) (1(w)) are abbreviated by w ().

A {0, 1}-sequence w has arbitrary long adjacent identical blocks (is of un-
bounded repetition) provided that for all n€N there exists a subword ww of @
where |w|= n. A sequence not of this type is called sequence of bounded repetition.
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The existence of sequences of unbounded repetition is evident. The second
section contains a historical remark concerning the existence of sequences of
bounded repetition; a special one is discussed in detail in Section 3, these
examinations bring up some interesting arithmetical identities.

The relative frequencies of symbols 1 in sequences with bounded repetition are
examined in Section 4.

Section 5 contains some results about operations on sequences of (un-)
bounded repetition.

In the last section a class of sequences with unbounded repetition is related to a
problem appearing in computer graphics.

2. Historical remark

It is well-known (Thue [12], Arshon [1], Hedlund and Morse [6]), that there are
{0, 1, 2}-sequences containing no subword of the form ww. Such {0,1,2}-
sequences can be used in order to construct sequences of bounded repetition.

Entringer, Jackson and Schatz [4] have shown that there are {0, 1}-sequences
having only subwords ww with |w|=<2 and that this constant cannot be improved.
The construction is based on a {0, 1, 2}-sequence containing no subword of the
form ww and the substitution 7(0)=1010, 7(1)=1100, 7(2)=0111.

It is remarked that the substitution 7(0) = 0000, +(1)=0101, +(2)=1111is also
possible.

A further sequence of bounded repetition can be constructed as in Section 3:
The sequence 0000 - - - is written down. Between every two symbols a gap is left.
Now the sequence 1111 - - - is filled in the gaps, where gaps of odd index are left
free. In the remaining (infinitely many) gaps the sequence 000 - - - is written,
where again gaps of odd index are left free. This process (inserting 0’s and 1’s) is
repeated ad infinitum. The nth element of this sequence can be obtained in the
following way: if n=2**'i+2, then a, =k (mod 2).

3. A special sequence with bounded r¢netition

Let be w =a,a,a;- -+, where a, €{0, 1}. a, =i (mod 2) if n=2%"'i+2*. Since
each neN can be uniquely written as n=2*"'i+2* w is well defined. (If the
binary representation of n is wa'10 - - - 0, o €{0, 1}, then a, = ¢’). » can be defined
as follows (see Jacob: and Keane [7]):

The sequence 0101 - - - is written down, leaving a gap between every two symbols:

a a; az; a, as ag a; ag a9 Q9 G Gy Gy3 Qg
0 1 0 1 0 1 0
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Now the sequence 0101 - - - is filled in the gaps, leaving free every second gap:

4, a4 a3 a, as G Q; Az a4y Gy Gy G2 Gy3 Qqg
0 1 0 1 0 1 0
0 1 0 1

The remaining gaps are again filled by the sequence 0101 - - -, leaving free
every second gap:

a, a; a3 4, as 4G a; AGg Qa9 Gy 411 G2 Gy3 Gy
0 1 0 1 0 1 0
0 1 0 1
0 1

This process is repeated ad infinitum.
Theorem 3.1. o is a sequence of bounded repetition.

Proof. It will be shown by induction on n=6, that w contains no word of the
form xx with |x|=n. (A separate discussion of the cases n=6, 7, 8, 9 and 10 is
necessary.)

(i) n=6. In a sct of 6 consecutive natural numbers there is always a k with
k=1 (mod 8) or k=5 (mod 8). The binary representation of k ends in both cases
with 01, therefore a, =0. Thus the binary representation of k +6 ends with 11,
and so a,,¢=1. It follows that two consecutive words of length 6 in « differ at
least at one position.

Similar arguments are used in the following cases: _

(ii) n=7. In a set of 7 consecutive natural numbers there is always a k with
k=3 (mod 8) or k=6 (mod 8). Therefore a, =1, but q,.,=0.

(i) n=8. In a set of 8 consecutive natural numbers there is always a k with
k=4 (mod 16) or k=12 {mod 16). In the first case a, =0 and a,.g=1, in the
second case a, =1 and a,.3=0.

(iv) n=9. For k=5,13 (mod 16) a, =0 and a,.,=1.

(v) n=10. For k=4,13 (mcd 16) a, =0 and a;.,,=1.

(vi) Since a,a,a¢* = =a,a,a; ', contains to each subword xx, where
|xj =2k already a subword yy, where |y| = k (yy is obtained by erasing all symbols
of xx with odd index). Therefore the statement holds for even n. )

(vii) Let be n=11 an odd number and a;,, * * * @1, @is 41" * * Qi+2, @ SUbword
of w of the form xx. Let ke{i+1,i+2} be odd. Then

WOy 1" " Osg ™ OO 100, 1300 5O 70 = Q.
Since k+n+1 is odd, in the same way it can be concluded that

G inBsn+1 " " Okinss = OkenThsn+2T0k 1n+a Tl tn 4670k +n+8 = B

- and a = B must hold. Therefore a = orororoTo = B. Without loss of generality let
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be o =17 (otherwise o is replaced by 7 and = by &). a;,, " a;,, contains a
subword

Y = 00C00T00 = 0jyy " * * Qjig-

Then there is a unique r, j+ 1<r=<j+4, such that r=2 (mod 8) or r=6 (mod 8).
Like in (i)-(v) it can be concluded, that a,# a,.,, which is impossible because of

the form of vy. (This reasoning also excludes, that w contains a subword xx, where
|x|=4.)

In Theorem 3.3 it will be shown, that @ can be defined recursively (similar to
Hedlund and Morse [6]).

The following lemma will then be used:

Lemma 3.2. g, Gy _;=0Agn g * az..n_lk for all neN.

Proof. Let be 1=<i=<2"-1 and wo10* the binary representation of i. Then
1wo10* is the binary representation of 2"*'—i and therefore @; = ay1_;.

Theorem 3.3. Let be a,, B,, n=1 recursively defined as follows:
oy =01 Bl= 19 an+l=aHOBm Bn+l=an16ni nzl-

Then a;- - ay_,=a, for all neN. ‘

Proof. First, by induction on n, it is shown that a, =E,,R:

(i) a,=0=1"=§;,

(") A1 = anOBn = El:-ikaf: a, 1BnR = E:+l-

Now the statement of the theorem is proved by induction on n:

(l) al = 0 =y, R
(i) L I e heca 1S TR Tl 0 W AR T T I AR
=a,0a, =a,0B8, = a,.;-

In the rest of this section the numbers n{*(k) and lim,_,, n{*’(k)/k are

examined. (Since there is no dangei of confusion, n,(k) will be written instead of
()
ny’(k).)

Definition 3.4. Let be k e€N,. The variation v(k) of k is defined recursively as
follows: v(0)=0, v(2j+i)=v(j)+86, where i,8€{0, 1}, =i+ (mod 2).

Roughly spoken, v(k) denotes the number of changes of consecutive digits in
the binary representation of k, where the leftmost digit 1 counts as a change.
The following len'ma shows a property of v(k) which is used in the sequel.

Lemma 3.5. Let be 2" <k <2"*!. Then v(k)=v(2"*'-k—-1)+1.
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Proof. By induction on n:

(i) If n=0, then only k=1 is possible and v(1)=1=v(0)+1.

(ii) Let be n=1 and 2" <k <2"*'. Then k=2j+1, ic{0,1} and 2" '<j<2".
Let be §,8'€{0,1}, 8=i+j(mod?2), §'=2"—j—i (mod2). Then §=5" (mod 2)
and

v(k)=vRj+i)=v(j)+8=v2"—-j—-1)+1+5
=vp(2"-j-1)+8'+1=0v(2Q2"—j—-D+1-i)+1
=p(2"*'-2j-i-1)+1=0Q" ' -k-1)+1.

Now the numbers n,;(k) and v(k) can be related:
Theorem 3.6. n,(k)=3(k—v(k)).

Proof. Let be 2" <k <2"*!. The statement is proved by induction on n:

(i) If n=0, then k=1 and n,(1)=0=23(1-0v(1)).

(ii) Let be n=1. The number of symbols 1 in a, - ay_,a,-** a can be
determined in the following manner (it should be remembered that a,. =0): In
@ ay_, occur exactly n,(2"-1)=3(2"-1-0v(2"—1)) symbols 1. To this
number the number m of symbols 1 in a,-,, - * * a+1_, is added, and the number
m’of symbols 1 in a, ., * - - az+1_; is subtracted. Lemma 3.2 implies that

m=ny2"-1)=2"-1-n,(2"-1)
and
m'=ny(2""'-k-1)=2""-k—-1-n,2"*' - k-1).
Therefore
nk)=nR2"-1)+m-m'
=n,2"-1)+2"-1-n,2"-1)-2""+k+1+n,(2"""'—k~-1)
=-2"4k+32"*"' -k-1-0v(2""" -k -1))
2(k—1-(v(k)-1))
=3(k —v(k)).

Now it can be shown that the sequence n,(k)/k of the relative frequencies of
symbols 1 in o converges:

Theorem 3.7. lim,_,.. n,(k)/k =3.

Proof. Since 0<uv(k)=<1+1d kalways hold, it follows that
ik -1-1d k)sn,(k)sik.
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Therefore
_1_(1_1+ld k)ﬁnl(k)s%.
2 k k

Since lim,_., (1+1d k)/k = 0, the proof is finished.
Another way to compute n;(k) shows

Theorem 3.8. n,(k)=Y,.,[(k+29)/2"*%].

Proof. First it should be noted that a, =1 if and only if there exists a number i,
such that s=3: 2! (mod 2'*?). (The binary representation of s must be of the form
w110') Let i be fixed. Then there are [(k —3 - 2')/2'*?]+ 1 numbers s, such that
s<k and s=3-2' (mod2*?). (The following fact was used: For given n, r, m,
0=<r<m, there are exactly [(n—r)/m]+1 numbers ¢, such that 0<t=<n and t=r
(mod m).)

Fuarthermore

k=3-27 . [k=3-2'+2"?] [k+2'
—rE +1= 27z =l7== |

A summation over i completes the proof.

Using Lemma 3.6 and Theorem 3.8 an interesting identity can be proved:
Corollary 3.9. Y., [(k +2)/21**]=4(k - v(k)).

In a similar way an other identity can be easily proved.

Theorem 3.10. Y., [(k +2')/2*]=k.

Proof. Let w'=b,b,b;--- be defined as w, but using 1111--- instead of
0101 - - - . Then clearly n{*’(k) =k holds for all k.

n{’(k) can be determined as in the proof of Theorem 3.8: b, =1 if and only if
there exists a number i, such that s=2' ‘mod 2'*"). {The binary representation of
s must be of the form w10')

Let i be fixed. Then there are [(k—2')/2"*']+ 1 numbers s such that s<k and
s=2' (mod 2'*"). Since

k-2 k+2
[2i+l ]+1=[ 2i+1 ]’

a summation over i completes the proof.




Infinite 0-1-sequences

[N d
20
[

4. Some properties of sequences with (un-)bounded repetition

In the sequel it will be shown, that for each a €(0, 1) there exists a sequence
with bounded repetition » = a,a,a; - - -, such that lim,_,.. n{(k)/k = a. To ob-

tain ll'llb, it is necessary to make some prepdranons

In the following 7 denotes the substitution 7(0)={00, 01}, (1) ={11}.

Lemma 4.1. Let o be a sequence with bounded repetition. Then +(w) contains only
sequences with bounded repetition.

Proof. Assume k to be a number such that » does not contain a subword ww,
where |w|=k.

Assume that there is a sequence with unbounded repetition n € 7(w). Then 7
contains a subword a,,;" " * Gy mBism+1 " " * Air2m, Where m=2k.

It is necessary to distinguish the following cases:

(i) i=0 (mod 2) and m =0 (mod 2). Then there is a subword ww in o, |w|=k,
corresponding by 7 to the subword a;,; * * * @; 2

(i) i=0 (mod2) and m=1 (mod2). If a;,,.0i, 1 =0x, then a,,,,=0 and
therefore a;,,,_1 =0, and therefore a,,,,_, =0, etc. Because of this @ contains a
subword 0°0', where r=k. If a,,,8;,,m+1=11, then a,.;,=1, and therefore

a;.» =1, and therefore a,,,,,, =1, etc. Because of this w contains a subword 1"1’,
where r=k.

(iii) i=1 (mod 2) and m =0 (mod 2). In this case w contains a subword of the
form o,wo,wa;, where |w|=k—1. From this it follows that o, # o, and o, # 0
must hold. If o,=0, then o3;=1 and therefore a,,,=0 and a,,,,,=1; this is
impossible. If o, =1, then o5 =0 and therefore a,,,,= 1 and a,,,,, = 0; this is also
impossible.

(iv) i=1 (mod 2) and m=1 (mod 2). In this case w contains a subword of the
form o,wo,03wa,, where |w|=k—1. Therefore o,# a5 or o,# o, must hold.
Without loss of generality one can assume that o, # ;. If o, =0, then o3=1 and
therefore a;.m+1=a;+m+2=1, etc. Because of this w contains a subword 0'0’,
where r=k. The case o, =1, 0;=0 can be discussed with similar arguments.

Lemma 4.2. Let o be a {0, 1}-sequence and lim,_,., n{"’(k)/k = .. Then for each
Bela,Xa+1)] there is a n € 7(w), such that lim,_... n{"(k)/k = B.

Proof. If B = a, 7 is obtained from » by replacing each 0 by 00 and each 1 by 11.
Now it is assumed, that B8 > . Then it exists a ko, such that n{*’(k)/k <p holds
for all k=k,. All symbols 0 in » are replaced by 00 until k, is reached. Then
all symbols 0 are replaced by 01, until a minimal k, is found, such that
n{"(2k,)/2k,=B. (This is possible: if all but finitely many symbols in w are
replaced by 01, then the sequence of relative frequencies of this new sequeace
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converges to 3(a+1).) Beginning with index k,;+1 all symbols 0 are again
replaced by 00, until a minimal k, is found, such that n{"(2k,)/2k,= B. This
process is repeated. Clearly, the so constructed sequence m has the desired
property. (Compare this construction with Knopp [8; p. 329].)

Lemma 4.3. Let w be a {0, 1}-sequence and lim,... n{”’(k)/k = a. Then for each
Bela, 1) there exists a n and a ne&"(w), such that lim, .., n{(k)/k = B.

Proof. Since the sequence (a+2*-1)/2% increases strictly monotonously and
converges to 1, there is a unique n, such that

a+2"-1 a+2"*'—l_(¢x+2”—1 )/
" Sﬂ< 2n+l = " +1 2.

Then there is a n'e 7"(w), such that

. n"(k) _a+2"-1
m ===

Then, because of Lemma 4.2, there is a ner(n’) (€7 '(w)), such that
lim, ... n{"(k)/k = B.

Theorem 4.4. For each B €[}, 1) there is a sequence with bounded repetition m, such
that lim,_,.. n{"(k)/k = B.

Proof. Let w be the sequence of Section 3. Then the statement is evident
applying Lemma 4.3 to w.

Theorem 4.5. For each Be(0,1) there is a sequence with bounded repetition n,
such that lim,_,. n{(k)/k = B.

Proof. The statement must be proved only for B €(0, 3]. Let  be a sequence with

bounded repetition and lim,_,., n{")(k)/k = 1— B. Then for n =@ the statement is
true.

Corollary 4.6. The set of sequences with bounded repetition has cardinality 2%.

This statement can be seen also in that way: From the work of Kakutani (cf.
Gottschalk and Hedlund [5; p. 109]) there are 2% square-free {0, 1, 2}-sequences.

This can be found also in Bean, Ehrenfeucht and McNulty [2]). Then a substitution
as in Section 2 gives the result.

By w=a,aa; -+~ ®(w)=Y a/2', each {0, 1}-sequence can be associated
with a real number in [0, 1]. Each real number which corresponds to a sequence
with bounded repetition is non-normal in accordance to Botel [3]. (See Niven
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[10].) Since the set of non-normal numbers is of measure 0, the following theorem
holds:

Theorem 4.7. Let M be the set of all sequences with bounded repetition. Then
®(M; is of measure 0.

Finally, it is shown, that there are sequences with bounded repetition, for which
the sequences of the ‘“nth averages” do not converge.

Definition 4.8. Let w =a,a,a,+* be a {0, 1}-sequence and the sequences a!",
a®’, a{",... of the nth averages (n=0) defined by:

1 [}
a”=gq, af”*”=7 Y a,
k=1

Then a{! = n,(k)/k.

Theorem 4.9. There is a sequence with bounded repetition m, such that no
limy o ai™ exists.

Proof. Let w be the sequence of Section 3. 9 will be constructed by applying the
substitution 7 to w step by step. For this purpose let a, 8 be so that ;<a < <3.
First step: Symbols 0 are replaced by 01 until a{’=B. Then symbols 0 are
replaced by 00 until a()<a.
kth step: Symbols 0 are replaced by 01 until a!’=p and a®=p and - - - und
al’=B. Then syiabols' 0 are replaced by 00 ratil al)<a and - - and a¥’<a.
For each k the sequence a{*, al", a",... contains infinitely many numbers
=<a and =B and tharefore it does not converge.

5. Operations on sequences with (un-) bounded repetition

The behaviour of sequences with (un-) bounded repetition is examined for the
following operations: changes of finite character, mixing, addition mod 2.

Lemm 5.1. Let w be a {0, 1}-sequence and o €{0, 1}. Then o is a sequence with
bounded repeti:ion if and only if ow is a sequence with bounded repetition.

Proof. If ow is a sequence with bounded repetition, then there is a k, such that
Tw contains no subword ww, where |w|=k. Then o does not contain such a
subword and is therefore a sequence with bounded repetition.

Let conversely w be a sequence with hounded repetition. Then there is a k,
such that w contains no subword ww, where |w|=k. Assuming ow to be a
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sequence with unbounded repetition yields gw = x¥9; = yyna, where |%|=k and
lv|=2 |%|. Then y = uxxv, and @ would contain xx as a subword.

Theorem 8,2, Let w be a {0, 1}-sequence and x, y €{0, 1}*. Then xw is a sequence
with bounded repetition if and only if yo is a sequence with bounded repetition.

Proof, It follows from Lemma 5.1 by induction, that xw is a ssquence with
bounded repetition if and only if @ is a sequence with bounded repetition. By a
similar argument ii can be concluded, that w is a sequence with bounded
repetition if and only if yw is a sequence with bounded repetition.

Remark. Theorem 5.2 shows, that by changes of finite character (deleting and
inserting of finitely many symbols) of sequences with bounded repetition again
sequences with bounded repetition are obtained.

Let w, be obained from w, by changes of finite character, and k; (i=1,2)
minimal, such that ; contains no subwcrd ww, |w|=k;. Then k, and k, can be
quite different.

Definition 5.3. For {0, 1}-sequences w = a,a,a; - - and n=b,b,b5 -+ - let

wDT’ = a1b1a2b2a3b3 ttt.
Theorem 5.4. The sequences with unbounded repetition are not closed under [J.

Proof. Let @ be a sequence with bounded repetition, 7,(0)=00, 7,(1)=11,
7,(0)=01, 7,(1)=11. Then according to Lemma 4.1 7,(w)=a1,a,a, - and
7(w) = b,b,b;5 - - - are sequences with bounded repetition. Let the sequences
n, = ajaba% - - - and n, = b b4b} - - - be constructed as follows:

Fcr all n=0 let

0> "~ if n is even,

ag " - aé"“-—l'—:[ . .
Ay *** apa_y if nis odd,

’ bz" ¢ b2n+l_l if n iS even,
b+ s b1 =1 5. e .
1 if n is odd.
Since 7, and 7, contain subwords 0“0* and 1*1* for infinitely many k, they are
sequences with unbounded repetition.

Now it is shown that n, [J n, is a sequence with bounded repetition. Assuming
the contrary tne following cases are possible:

(i) ayby.y v al,, blin=0a} ni1blinsr a}i2nb}i2n

Then a:+l te a:-f-»r: a:+n+1 te a:+2n and b:+1 vt b;+n= bl"+n+1 the b:+2m WhiCh is
possible only for finitely many n.
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() Bl@far e Blp@lpir =Bl i1@hgsa’ ** Bleanleznn
is discussed similar to (i).
(@iii) a:Hb:ﬂ T b:+na:+n+1 =b} iy 1@zttt @) ians1B)r2p+1:

For a sufficiently large n there is a i (1<i=<npn), such that a/,,4/.;.; =00 and
therefore b).,;.,b!+;n+1 =00, which is excluded by the construction of 7,.

i ’ cee = e
(IV) br+la£+2 ) a:+n+lb;+n+l - a;+n+2b£+n+2 b;+2n+la:+2n+2

is discussed similar to (iii).

If o and 7 are sequences with bounded repetition, then it is quite possible, that
o[ n is a sequence with bounded repetition. (An example: w 0 o = 7,(w), 7,
from Thecrem 5.4.) It could not be found out, whether or not this holds in
general. however the following can be shown:

Theorem 5.S. For each sequence with bounded repetition ® there is a {0, 1}-
sequence m, such that o (7 is a sequence with unbounded repetition.

Proof. Let w=a,a,a;--- be a sequence with bounded repetition and 7=
b,b,b; - - - be constructed as follows: for all n=0 let be b,» be anyhow and

R I T R ICR LRy PRINT. PAFS RN PINPUE

Then w [17n contains for all n the subword
Aan 1 Aonyon-147 " " Aan+1_1Apn on-1Qon 1 Apnygn-141 ° ° ° Aan+1_1Aon _gn-1

of the form ww, the length of which is 2(2" —1).

Interpreting 0 and 1 as the elements of GF(2), and defining the addition of
{0, 1}-sequences elementwise, it can be shown that neither the sequences of
unbounded repetition nor the sequences with bounded repetition are closed under
addition.

Theorem 5.6. There are sequences of bounded repetition w,, »,, w3 and sequences
with unbounded repetition my, 15, M3, such that
() otw,=w;, (V) w;+n=ms,
(i) w,+w, =7, V) n2tm=wy,
>iii) w;+ 1, =y, i) my+mi=n.
Proof. Let be n; =0000 - - - . Then (ii), (iii) and (vi) are true. Let w be a sequence

with bounded repetition, w, = 1,(w), w,= lw, and w;=7,(®) (v; from Theorem
5.4). Since 7,(w)+ 175(w) = 7,{&), (i) holds.
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Let be w,=a,ad5 . Then ny=bybyb; -+ and n3=c ¢3¢+« + can be con-
sttucted in the following way:

o if ni
bzu idd bzﬁﬂ_i ‘—‘{ l " !s evet,
dgei i dgue_y I 1 s odd,

{02" if 1 is odd,
Cg“‘ "CQHH..1= ' . R
Ao b b lgeei_y A 118 even.

Then (iv) and (v) are true.

6. A class oi sequences with unbounded repetition and a problem In compuier
grephies

Giiven a line y = ax, 0= a <1, whieh is to be drawn approximately for x =0 by
an B-directional-plotter in a way that the errors measured along the ordinate are
minimal, the points (n[an+i) must be eonnected. The numbers b,=
[an +i]=[a(n=1)+1] are in {0, 1} and correspond to the instructions for the
plotter (in the n + 1-th step a line between the points (n, m) and (n+1,m+b,) is
drawn). (Cf. Prodinger et al. [11])

The sequenee b;byb; '+ is periodie with period g, if and only if a=p/q is
rational. For irrational a, the sequenee b,b;bs' '+ is not periodie, but the
following theorem holds:

Thoorem 6,1, For each a€[0,1) the sequence h,b;by::: is a sequence with
ur.hounded repetition.

Proof, If o is rational, the statement is evident. Let a be irrational. The sequence
ak (mod 1) is dense in [0, 1) (Kuipers and Niederreiter [9; p. 23)).

let be n'>0, It will be shown that there is a8 n=n', such that the sequence
byb,by - - - contains a subword ww, where |w|=n. Since ak (mod 1) is dense in
[0, 1), there is a minimal n=n’', such that

0<an(mod 1)< |-l=if2n' (ai(mod 1)).
Let be € = an (mnod 1),

8,= min (3—(ai(mod 1))), 6= 1T¢i2n (ai(mod 1)-3).

lsjsy
ai<]/2 ai>1/2

Since n was chosen minimal, € <§, + 8, holds. Therefore there is a 8, where
£<8<8,+8,and §=4,. Since 1-5,<1—-(6—8,) and a} is dense, there exis's a
S, sucﬁ that as (mod 1)e(1-8,,1-(6-6,)).
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Now it will be shown, that b, b,,, =byipsr*** beray holds: First, fot
Isisn,

a(s+n+1) (mod 1) = (a(s + i)+ &) (mod 1)

o4 d B N o 4 Lo14

olds. Since (a(s + 1)) (mod 1) ¢ [3 =&, 1] it follows
(a(s +i)+1) (mod 1) ¢[1=¢ 1]
Let i be ehosen arbitrarily (1=i<n). Let be

n=fa(e+i=1)+1] and ny=[ale+n+i=1)+1).
if b, =1, then

a(s+i)+ie(m+1,n,+2) and a(s+n+i)+ie(m+1, n;+2).

Therefore b,,,.,=1 holds. If b,,, =0, then a(s+i)+1€(n,, n,+1=¢) and there-
fore a(s +n+i)+ie(na+ € na+1); from this b, =0.

Remark. 1n averysimilar way one ean show the following: Let vy be an arbitrary real
number, then the sequence b)bibs '+ where b, =[an+y]=[a(n=1)+7v]), is 8
sequence of unbounded repetition.
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