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LEVEL NUMBER SEQUENCES FOR TREES 
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Technische Universi~ Wien, A-1040 Wien, Austria 

We give explicit asymptotic expressions for the number of "level number sequences" (1.n.s.) 
associated to binary trees. The level number sequences describe the number of nodes present 
at each level of a tree. 

I. Introduction 

This paper concerns some statistical properties of a parameter related to the 
profiles of binary trees. 

Define the level of a node v in a rooted tree t as the number of nodes on the branch 
connecting v to the root of t (counting both end nodes). The level number 
sequence of a tree t is the infinite sequence of integers (nl, n2, • • .) such that nj is 
the number of nodes at level j in tree t. With our previous definitions, a level 
number sequence starts with a 1 and consists of eventually null integers. 

Figure 1 displays a tree whose level number sequence is (1, 1, 3, 9, 25, 0, 
0 , . . . ) ,  each node being labelled with its depth. (We are indebted to Ms C. 
Cabart for providing this computer generated diagram which is built after a 
natural botanical growth model for coffee and tree shrubs.) 

Let t be a binary tree as defined for instance in Knuth's book [7]: such trees 
are: (i) rooted, i.e., a certain node is distinguished as the root of the tree; (ii) 
binary, that is to say, each node has either 0 or 2 descendents; (iii) planar, i.e., 
subtrees han~ng from a binary node are distinguished as left or right subtrees. 
(Note planarity is not essential here). 

In an unpublished paper [2], Clowes, Mitrani and Wilson address the problem 
of determining the number of distinct level number sequences associated to all 
binary trees formed with n binary nodes. Without loss of generality, we shall 
define level number sequences for binary trees by taking here nj to be the number 
of binary nodes at depth j in the tree. (In computer science terms, this amount to 
considering nullary nodes as null pointers). 

Let Hn be the set of all such sequences, and let Hn = card(Hn). It is clear that 
an element of H,, is formed from a sequence (na, n2, • • •,  nk) of non-zero integers 
followed by an infinite sequence of trailing zeroes: nj = 0 for j > k. The nj with 
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Fig. 1. A tree with level number  sequence: (1, 1, 3, 9, 25, 0, 0 . . . .  ). 

] ~< k satisfy the following characteristic conditions: 

Cl .  
C2. 
C3. 

nl  = 1; 

For all ] such that 1 < ]  ~< k : 1 ~< nj ~< 2/lj_l; 
nx + n2 + • • .+nk=n. 

The parameter k in the above definition is called the height of the level number 
sequence since it corresponds to the (usual) height of any associated tree. 

In classical combinatorial analysis terms [1], [5], H~ is isomorphic to the set of 
all compositions of integer n such that the first summand is equal to 1 and such 
that each summand is at most twice the previous summand. Thus our result can 
be interpreted as a counting result for restricted compositions. (See [1], [5]). 

The first few values of H~ for n = 1 , . . . ,  10 are readily found to be: 

1, 1, 2, 3, 5, 9, 16, 28, 50, 89. 

Clowes, Mitrani and Wilson first 
Fibonacci number): 

observe the inequalities (with Fn the nth 

F~ ~ H,, ~< 2 "-1 . (1) 

The upper bound results from the fact that 2 n-1 is the number of (unrestricted) 
compositions of n, while the lower bound counts the subset of Hn formed with 
summands only equal to 1 Or 2. 

The authors of [2] then provide a succession of refinements of this simple 
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combinatorial argument until their best bound which is of the form: 

Cll.755" < H,~ < C21.802 n, 

and from numerical evidence, they conjecture that H,, grows roughly like 1.794 n. 
We derive here a precise asymptotic estimate of H, in the form of 

T h e o r e m  1. The number of level number sequences H. satisfies the asymptotic 
estimate: 

H , - K . v " ,  (2) 

where K = 0.254 505 523 565 319 and v = 1.794 147 187 541 685 is the inverse of the 
smallest positive root to of the transcendental equation: 

X ( - l Y  +1 pV+'-2-j 
j ~ a  (1 - p ) ( 1  - p 3 ) ( 1  - p7) . . .  (1 - p~-l)  = 1 .  

Values given by formula (2) are fairly accurate; for instance,//lo = 89 while the 
integer truncation, H~o, of approximation (2) is 88; for n = 15, corresponding 
values are H15 = 1639 and H~'5 = 1635. For n = 100, one finds: 

Hxoo = 6 187 341 363 780 618 339 584 784, (3a) 

H~oo = 6 187 341 363 780 614 360 373 016, (3b) 

respectively, so that there: 

1 < H~oo< 1 + 7  x 10 -16. 

Our approach in this note consists in setting up a difference equation for a 
series closely related to the generating function H(q) A= ~n>~o H,q ~. The equation 
is then solved and the equation involves a non-standard form of so-called q-series 
(See [1]). As a by-product of our analysis, we obtain 

T h e o r e m  2. The generating function of the quantities H, is expressible as: 

a(q) 
H(q)=l_b(q), (4) 

where 

a(q) = ~ (-1)/+I 
j ~ l  

b(q) = ~ (-1)/+1 

q2/+I-2-/ 
(1  - q ) ( 1  - q a ) ( 1  - q 7 ) . . .  (1  - q 2 / - 1 - 1 ) ,  

q2J+ l -  2-/  

(1  - q ) ( 1  - q a ) ( 1  - q 7 ) . . .  (1  - q2 , -1 )  • 

(5) 

(6) 

The proof of Theorem 1 proceeds from there by noticing that H(q) has a 
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meromorphic continuation from which H~ can be recovered using Cauchy's 
integral formula in combination with a suitable contour of integration. 

We finally mention that somewhat related results on the profiles of trees have 
been obtained by Meir and Moon [8] ("thickness of layers"), Flajolet and 
Odlyzko [4] ("height"), Odlyzko and Wilf [9] ("width"). However the statistical 
models are usually different. Notice for instance that, under the uniform statistics, 
the expected width of a binary tree of size n (this corresponds to max nj)has not 
been exactly determined although it is known to be of order O(Vn). 

2. Generating function equations 

We let H~] denote the subset of Hn formed with level number sequences (l.n.s) 
of height k, whose last non-zero component has value j; we also let H~] = 
card hd~k,]. We introduce the corresponding bivariate generating functions: 

Htkl(q, u ) =  ~ H~}qnu j, 
n j ~  l 

(7a) 

H(q, u ) =  ~ Htkl(q, u). (7b) 
k ~ l  

Thus H(q, 1) is the generating function of the H.:H(q, 1) = H(q). 

I~mma 1. The bivariate generating function H(q, u) 
equation: 

satisfies the functional 

H(q, u)=qu + uq [H(q, 1 ) - H ( q ,  q2u2)]. (8) 
1 -  uq 

Proof. From the definition, we have: 

Ht°l(q, u) = qu, 

corresponding to the unique 1.n.s. (1, 0, 0 , . . . )  of height 1 whose last non-zero 
component is 1. 

A recurrence relating H [kl to H [k+l] is easily obtained by the technique of 
"adding a new slice": consider the set Hl~kJ; when adding a new non-zero 
component nk+~ to it, it will give rise to 1.n.s. of height k + 1 with last element 
equal to j*, where j* can be any of the integers 1, 2 , . . . ,  2], the weight (i.e., the 
size of any representing tree) becoming n + j*. 

In terms of generating functions, this means that the process of going from 
/_/[k-l] tO Hill is achieved by the substitution 

uq ( 1 -  ( uq ) "J ). u j ---> u q  + ( u q )  2 + . . .  + ( u q )  2j = 1 - u q  
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Whence the recurrence 

uq [Htkl(q, 1) - H[kl(q, q2u2)], Hlk+ll(q, u) = 1 - uq 

and summing over all values of k yields the functional equation in the statement 
of the lemma. [] 

We can now easily finish the proof of Theorem 2. A functional equation of the 
form (O the unknown function) 

O(u) = ~.(u) + pt(u)O(o(u)) (9) 

admits, by iteration of (9), the formal solution 

k-1 ] 

where O(k)(U) denotes the kth iterate of o(u). 
Solution (10) applies to eq. (8) with 

tY(U) "- q2u2, ~,(U) = uq + uq 
1-- uq 

(10) 

H(q, 1), l z ( u ) = ~  
-uq 

1 - uq 

where the iterates of o(.) are given by a(k)(u)= q2*+l-2U2*. In this fashion, one 
obtains for H(q, u) a 'solution' of the form 

(11) 

resulting linear equation for 

H(q, u) = A(q, u) + B(q, u)H(q, 1). 

Setting u = l  in (11), and solving the 
H(q, 1 ) -  H(q), we get: 

A(q, 1) 
H(q) = 

1 - B ( q ,  1)" 
(12) 

A simple computation from the form of iterates of or(-) and from the scheme (10) 
shows that A(q, 1 ) - a ( q )  and B(q, 1)-=b(q) where a(q) and b(q) are given by 
(5), (6). This concludes the proof of Theorem 2. [] 

3. Asymptotics 

In order to recover Hn from the expression of H(q) provided by Theorem 2 
(eq. (4)), we use Cauchy's integral formula for coefficients of analytic functions. 
Since, by the bound (1), H(q) has a radius of convergence O larger than 
l/q0 =0.61803, we have: 

l fl q H(q)q,,d~+ 1. (13) H,, = 2i~ 1=½ 
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Classically (see e.g. [3]), the asymptotic form of Hn is easy to predict, and is 
simply determined by the dominant singularities of H(q). 

We first observe 

Lemraa  2. Function H(q) is meromorphic for Iql ~< 7 with a unique simple pole at 
q = p, where p is defined in the statement of Theorem 2. 

Proof. Since H(q) is the quotient of two functions analytic for Iql < 1, it is 
meromorphic for Iq l<  1. Since H(q) represents a series with positive coefficients, 
it has at least a real positive singularity on its circle of convergence. Therefore its 
radius of convergence is equal to the smallest root of the equation 1 - b(q) = 0 if 
that root does not cancel a(q). Let p denote the smallest positive root of 
1 - b ( q ) = 0 .  We find numerically that p = 0 . 5 7 3 6 7 . . . ,  and at that point 
a(p) = 0.34373. . .  and b'(p) = 2 .42320. . . .  Thus p is a simple pole of H(q). 

We can check, by numerical analysis, that the equation 1 -  b(q)= 0 has no 
other zero satisfying Iql ~< 7 (This checking could if necessary be transformed into 
an unpleasingly formal proof). To that purpose, we use the principle of the 
argument [6]: 

The number of solutions to the equation f(q) = 0 that lie inside a simple 
dosed curve F, with f (q)  analytic inside and on F is equal to the 
variation of the argument of f(q) along F, a quantity also equal to the 
winding number of the transformed curve f(F) around the origin. 

Figure 2 shows the shape of the curve f (F)  when F is the circle Iql = 7 and 
f (q)  = 1 -  b(q). Its winding number is clearly equal to 1, so that f(q) has only 
q = p as a zero when Iql ~< 7 .  [] 

We can now conclude the proof of Theorem 1. To that purpose we consider the 
integral: 

flq dq 1 H(q) qn+l " (14) In = 2 i~  I=~ 

By the residue theorem, the quantity H , , -  In which represents the integral of 
H(q)/q n÷~ along two concentric circles is equal to the sum of the residues of the 
integrand taken with a minus sign. 

Since one has, when q ---> p: 

a(p) 1 
H ( q ) ~ - b , ( p ) q _  p 

one gets: 

a(p) p-,,-1. (15) Hn-/n =b,(p ) 
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Conformal Mapping by b[q] of circle l z 1=0.7 

x=-l..+2; y=-2..+2 

Fig. 2. The transform of the circle F = {q [Iql - 7} by function 1 - b(q). (Function b(q) has been 
estimated from the first 50 terms of its Taylor expansion at q = 0; the curve is obtained by 
transforming 100 regularly spaced points on F). 

We  finally notice that since the integrand is analytic for I ql = ~ ,  quantity I, is 
O((~7)"), whence finally fo r /7 ,  an expression of the form: 

H ,  = K v "  + O((~)" )  

where K and v are obtained from (15), and v = 1/p = 1.794 . . . .  
This therefore completes the proof of Theorem 1. Notice that the error term in 

(15) is exponentially smaller than the dominant  asymptotic equivalent: our proof 
shows that it is here at most a fraction 0(0.8")  of the main term. This fact 
common to the asymptotic behaviour of coefficients of meromorphic  functions 
accounts for the excellent numer ica l  accuracy of the approximation (2), as is 
exemplified by (3a), (3b). 

Notice that if t-ary trees were considered (a node  in such a tree may have 
out-degree 0 or t only), then one could prove similarly that the associated l.n.s. 

satisfy: 

H~(t) = r ( t )  " v"( t) ,  

and we should expect v(t) to tend to 2 as t---> 0% since as t increases, a larger 
fraction of integer compositions become level number  sequences. 
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Note added in proof 

After this paper was written, it appeared that the sequence Hn is of interest in 
other branches of mathematics. 

Neil Sloane pointed out that our sequence appears in his Handbook of Integer 
Sequences. It is not difficult to see that, in effect, H,~ counts the number of ways of 
expressing 1 as a sum of n elements of the set {2-k}k~,0, with repetitions allowed, 
the order of summands not being taken into account. An example is 1-----2-4+ 
2 -4 + 2 -3 + 2 -2 + 2 -2 + 2-2; to such a partition, a canonical tree (uniquely 
determined by its l.n.s.) is associated by representing the way terms can be 
grouped together to form 1, recurrently starting from the smallest ones (on the 
example that l.n.s, is (1, 2, 1, 1, 0, 0 , . . . ) ) .  

Jean Lannes arrived at the same problem of partition counting, from algebraic 
topology. It turns out, rather unexpectedly, that H(q) is the Poincar6 series of 
the module on Steenrod's algebra. That module was considered by Carlsson in 
Topology 22 (1983) 83-103 and noted by him X1, then further investigated by 
Lannes et al. in Ann. Sc. Ec. Norm. Sup. 19, 303-333 and noted there K. The 
series is defined as 

e(q) = d i m [ K n ( 1 ) ]  • q" 

and it coincides with our H(q). It seems further to be the case that our dominant 
pole p appears in connection with other Poincar6 series in algebraic topology. 

The authors are extremely grateful to N. Sloane and J. Lannes for com- 
municating these observations. 
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