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Summavg.

The paper deals with ordered trees the nodes of which
are labelled by elements of {l1,2,...,k} such that any
sequence of labels connecting the root with a leaf is
weakly monotone. Considering the leaves to be enumerat-
ed from left to right an asymptotic result on the aver-
age height of the j-th MIN-turn, i.e. the root of the
subtree of minimal height with leaves j,j+1 , for fixed
J and large node number n is derived. Combined with a
result of ® on the average height of the j-th leaf, the
theorem gives information on the average oscillation of
the contour of monotonically labelled ordered trees.

1. Introduction

A large number of recent papers in Discrete Mathe-
matics deal with the problem of the determination of the
average shape of rooted tree structures. Compare
e.g. 1,2,5,7,11,12 14, These problems have also proved
to be applicable in the analysis of special algorithms
(see 8).

In some of the new work of the authors it has turned
out to be interesting to investigate generalized classes
of tree structures which are derived from binary trees,
t-ary trees, ordered trees etc. by means of a monotone
labelling of the nodes of the tree: Consider the nodes
labelled by elements of {1,2,...,kl} in such a way that
any sequence of labels connecting the root with a leaf
is weakly monotone. In 12 Prodinger and Urbanek have
considered the problem of finding asymptotic equivalents
to the numbers of such tree structures, in 12 the aver-
age height of monotonically labelled binary trees has
been investigated and in ® the average height of the
j-th leaf (where leaves are enumerated from left to
right) has been established for certain families.

In the present paper these considerations are com-
pleted by a more detailed study of the contour of mono-
tonically labelled ordered trees. Our results contain
some of the material of Kemp's investigation 8 on the
average oscillation of a stack during postorder travers-
ing of a binary tree as a special case.

The mathematical apparatus to handle the problems 1in
question is influenced by some methods and ideas of °®
and seems to give a quite fitting framework of studying
some of the already published results in a shorter and
probably more legible fashion.

Adopting the notation of Kemp we use the terms MAX-
turn and MIN-turn of ordered trees, where the MAX-turns
are just the leaves of the tree (i.e. the nodes having
no son), which are assumed to be enumerated from left to
right by the natural numbers. The j-th MIN-turn is de-
fined as the root of the (uniquely determined) subtree
which has exactly the two leaves j and j+1. For example
consider the following tree with MAX-turns 1,2,3,4 and
MIN-turns 1',2',3':

The level number of a MAX- or MIN-turn is the number
of nodes in the chain connecting the root with the turn
in question.

In the paper ¢ the following result has been establ-
ished: Let B, be the family of ordered trees with nodes

labelled monotonically of {l,2,...,k}. The average
level number of the j-th leaf (i.e. the j-th MAX-turn)
of the trees of B, with exactly n nodes (where all such
trees are regardeg equally likely) converges for n-e
to a finite limit ay,,(k,j), which can be determined

explicitly for small values of k and has the following
asymptotic behaviour:
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The constants C(k) can be expressed in terms of some
"characteristic quantities" of the family B, » which
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have been studied extensively in the paper 13. This
allows to describe the asymptotic behaviour of C(k) as
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with a constant C independent from k.

For the following considerations we will use the
cited results of 2 , but it will turn out to be neces-
sary to study the asymptotic behaviour of “MAH{k’j}

more in detail by establishing a result of the type

agag(ksd) = Cq(k).3 2 + Co(Kk) + 0(5T4) (=) (1)

Furthermore we introduce the average level numbers
ayn(Ksd) of the j-th MIN-turn of the trees of B with

exactly n nodes "for large n" (that is we consider the
limit of the concerned numbers for n-«), as above in
the definition of mMﬁK{k’j}‘ We will prove that
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and determine the asymptotic behaviour of the difference
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(which is just the "oscillation of the contour of the
trees) by means of the above mentioned result (7) and
a corresponding estimation -
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HMIN{k’j} = Cl(k)-jlzz E Ea(k} + 0(J

for the MIN-turns.

In the special case k=1 our results yield just the
previously cited theorem of Kemp, which in our termino-
logy reads
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Remark. For the sake of brevity we will frequently

use the symbol "+" as to indicate that the concerned
relation is valid if all "«"'s are replaced by "MAX"
or all are replaced by "MIN".



2. The average oscillation of ordered trees

Using the suggestive terminology of Flajolet 2 the
families Bk of ordered trees with nodes labelled mono-
tonically by elements of {1,2,....k} may be defined by
the formal equations

E:
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where Ek is the family with labels taken from {2,,..,k+1}
The corresponding generating functions yk{zj fulfill
£
Yom O ¥ = Y1 * Ty (D) (2.2)
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n nodes and A *-turns (for the symbol * compare the re-
mark at the end of the introduction). It is useful to
define the following generating functions:

be the number of trees 1in Bk with exactly
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. where <f(u),ul>denotes the coefficient of u' in the
(formal) power series f(u).
The first recursion is proved in® (4.6); for the se-

cond recursion observe that a tree in Ek may either have

a root labelled by an element of {2,...,k}, which con-
stitutes the first term, or it starts with a root label-
led by 1. In the latter case there are 2 possibilities
for the position of the MIN-turn: either the j-th MIN-
turn is situated within the r+l-st subtree of the root,
which yields the second term (Osr<t-1), or the j-th
MIN-turn lies in the root itself, which constitutes the -
third term.

Next we consider the generating functions vg’gh](z}

of trees in B with at least j #*-turns and with a level

number of the j-th *-turn which is less of equal to h.
By a similar argument as above we have
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The coefficient of z" in these power series is just the
sum of level numbers of the j-th *-turn.

In ®(4.12) the following recursion is established:
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Subtracting recursions (2.5) and (2.6) for the MIN-
turns and summing up we obtain
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where the functions Gk{z,u] fulfill
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In the paper 12 it has been shown that the (algebra-
ic) singularities q, nearest to the origin of the func-

tions yk{z}-ubey the following recursion:
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and the functions yk[z} behave like
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From this it is not difficult to conclude that the
behaviour of the functions Hk ; is of the following

type: 3

He,3(2) = B 5(a) = & 5.(q-2)/% + 0(a-2) . (2.18)

The asymptotic behaviour of the coefficients follows
now by a theorem of Darboux (see e.g.%,11) to be
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The desired average level numbers of the j-th x-turn
"for large n" (compare the comments in the introduction)
are therefore given by
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Relations (2.20) may be rewritten now in shorter
form:
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In the following we will expand the functions Hk(u} as
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With the first identity for di it is obvious that
MAX 2

A _1(qp.u) = dk~l'(1'”) + 0(({1-u}") . (2.29)
Therefore we have by (2.26)
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The constant Ek can be determined in the following way:
MAX

By the definition of 4,"" and formula (4.5) of ° we have
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As an immediate consequerice of {2.29] and (2.32) we get
et = d
e (2.34)
St g

In order to complete the computation of g, it remains

K
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The defining relation for B

, (2.24) and recursion
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Using again (2.35) and
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Putting everything together
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and therefore we get by Darboux's theorem cited above
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We summarize our results 1in the following

THEOREM 1. The average level number of the j-th MAX-

(MIN)-turn of an ordered tree with n nodes labelled
monotonically by elements of {1,2,...,k}has the
following asymptotic behaviour "for large n":
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This result may be interpreted in the following way:
The average difference between the'level numbers of a

MAX-turn and the consecuting MIN-turn (i.e. the average
oscillation of the contour of the tree) is given asym-
ptotically by

.=1/2

aMax(Kad) = ayin(ksd) = v + 03 %), (Jo=)(2.43)

with T from formula (2.40).

We start with some examples: The instance k=1 is
just the case studied in Kemp's paper

Using the formulas from above we have

Ll - S
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and therefore the average oscillation is given by
! : e b s
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In the case k=2, which is the case of monotone
Boolean Tabelling, we get
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and for the average oscillation
2 : 25 .=1/2
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The asymptotic behaviour of the constants Y, can be
established as follows.

THEOREM 2. As k-,

5
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Proof.
In 13 it has been shown that the sequence {qk] ful-

fills
1 log k
B e 0 )
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Defining pk::q;
e 2k + O(log k) .

In order to derive one further term of the asymptotic
expansion we set |
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Inserting this into the recursion
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In the next step we treat the terms [al;:
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where C denotes some constant. Taking exponentials
we obtain with some constant D
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Inserting these results in formula (2.40) -for i
we find

Y, = VER(L + 022 Y)).

=k +Tog k)
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.k3f2+D{k .1og k)

u#na ﬁﬁ —

S log k
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and the Theorem is proved. -

The asymptotic behaviour of C,(k) resp. C,(k) can

be established in a similar way.
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