

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION

TABLE OF CONTENTS

A Note on a Geometrical Property	
of Fibonacci Numbers	386
The Fibonacci Killer	389
Fibonacci, Lucas and Central Factorial Numbers, and πMichael Hauss	395
Characterizing the 2-Adic Order of the Logarithm	397
Number of Multinomial Coefficients Not Divisible	
by a Prime	
Author and Title Index for Sale	406
A Note on Brown and Shiue's Paper on a Remark Related to the Frobenius Problem	407
An Alternative Proof of a Unique Representation TheoremA.F. Horadam	409
New Editorial Policies	411
Some Information about the Binomial Transform	
Book Announcement: Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs, and Applicationsby Dr. Boris Bondarenko	415
Pierce Expansions and Rules for the Determination of Leap Years	416
Some Congruence Properties of Generalized Second-Order Integer Sequences	424
Fifth International Conference Proceedings	428
Partial Sums for Second-Order Recurrence Sequences	429
Seventh International Research Conference	440
Cyclic Fibonacci Algebras	441
A Note on a General Class of Polynomials	445
Extended Dickson Polynomials Piero Filipponi, Renato Menicocci, and Alwyn F. Horadam	455
The Fibonacci Conference in Pullman	
Elementary Problems and Solutions Edited by Stanley Rabinowitz	
Advanced Problems and Solutions	
Volume Index	

VOLUME 32 NOVEMBER 1994 NUMBER 5

THE FIBONACCI KILLER*

Peter J. Grabner

Department of Mathematics, Technical University of Graz, Austria

Helmut Prodinger

Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria (Submitted March 1993)

1. INTRODUCTION

We consider the following stochastic process: Assume that a "player" is hit at any time x with probability p. However, he dies only after two consecutive hits. We might code this process by 0 and 1, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described by

$$\{0, 10\}^* \cdot 11.$$

The notation $\{0, 10\}^*$ denotes arbitrary sequences consisting of the blocks 0 and 10, the block 11 are the fatal hits. Notice that $\{0, 10\}^*$ are exactly the admissible blocks in the Fibonacci expansion of integers (*Zeckendorf* expansion, cf. [13]). Accordingly, the generating function

$$\frac{p^2 z^2}{1 - qz - pqz^2} \tag{1.1}$$

has as the coefficient of z^x the probability $\mathbb{P}\{X=x\}$ that the lifetime X of a player is exactly x. The generating function (1.1) is known in the context of the Fibonacci distribution or geometric distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12].

Here, we are interested in n (independent) players subject to this game and ask when (in the sense of a mean value) the last player dies.

Without the "Fibonacci" restriction, i.e., the maximum of n (independent) geometric random variables, this problem has been studied previously and has some applications. (Compare [5], [11].)

We have obviously

$$\mathbb{P}\{\max\{X_1, ..., X_n\} \le x\} = (\mathbb{P}\{X \le x\})^n. \tag{1.2}$$

The generating function of $\mathbb{P}\{X > x\}$ is given by

$$\frac{1+pz}{1-qz-pqz^2}.$$

We now factor the denominator of this function to obtain

$$1 - qz - pqz^2 = (1 - az)(1 - bz)$$

with

$$a = \frac{q + \sqrt{q^2 + 4pq}}{2}$$
 and $b = \frac{q - \sqrt{q^2 + 4pq}}{2}$.

^{*}This research was supported by the Austrian-Hungarian cooperation project 10U3.

Performing the partial fraction decomposition and extracting coefficients yields

$$\mathbb{P}\{X > x\} = \frac{1}{\sqrt{q^2 + 4pq}} (a^x(a+p) - b^x(b+p)).$$

Using (1.2) we obtain the expectation for the maximum lifetime of n players:

$$\mathbb{E}_{n} = \mathbb{E} \max\{X_{1}, \dots, X_{n}\} = \sum_{x \ge 0} \left(1 - \left(1 - \frac{1}{\sqrt{q^{2} + 4pq}} (a^{x}(a+p) - b^{x}(b+p))\right)^{n}\right). \tag{1.3}$$

By the binomial theorem we obtain

$$\mathbb{E}_n = \sum_{m=1}^n (-1)^{m-1} \binom{n}{m} \sum_{x \ge 0} (Aa^x - Bb^x)^m, \tag{1.4}$$

where we use the notation

$$A = \frac{a+p}{\sqrt{q^2 + 4pq}} = \frac{a^2}{q\sqrt{q^2 + 4pq}} \quad \text{and} \quad B = \frac{b+p}{\sqrt{q^2 + 4pq}} = \frac{b^2}{q\sqrt{q^2 + 4pq}}.$$

For example, in the symmetric case $p = q = \frac{1}{2}$, we have $a = \frac{1+\sqrt{5}}{4}$, $b = \frac{1-\sqrt{5}}{4}$, $A = \frac{5+3\sqrt{5}}{10}$, $B = \frac{5-3\sqrt{5}}{10}$.

We will find that $\mathbb{E}_n \sim \log_{1/a} n$ and refer for the (technical) proof and a more precise statement to the next section.

2. ASYMPTOTIC ANALYSIS

In (1.4) we found the expression

$$\mathbb{E}_{n} = \sum_{m=1}^{n} (-1)^{m-1} \binom{n}{m} f(m), \tag{2.1}$$

containing the function

$$f(z) = \sum_{x \ge 0} (Aa^x - Bb^x)^z \text{ for } \Re z > 0.$$

For an expression of that type we can write a complex contour integral

$$\mathbb{E}_{n} = \frac{1}{2\pi i} \oint_{e} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z) dz, \qquad (2.2)$$

where \mathcal{C} is a positively oriented Jordan curve encircling the points 1, 2, ..., n (and no other integer points); this can easily be checked by residue calculus.

We will use Rice's method to obtain an asymptotic expansion for \mathbb{E}_n . For this we refer, e.g., to [2] and [6]. This method is based on a deformation of the contour of integration. For this purpose we need an analytic continuation of the function f to a region containing a half-plane $\Re z > -\varepsilon$ for $\varepsilon > 0$ (we actually give an analytic continuation to the whole complex plane).

Using the notation C = B/A and d = b/a (observe that |C| < 1 and |d| < 1) we obtain

$$f(z) = A^{z} \sum_{x \ge 0} a^{xz} (1 - Cd^{x})^{z} = A^{z} \sum_{x \ge 0} a^{xz} \sum_{\ell \ge 0} (-1)^{\ell} C^{\ell} d^{x\ell} \binom{z}{\ell}$$

$$= A^{z} \sum_{\ell \ge 0} (-1)^{\ell} C^{\ell} \binom{z}{\ell} \sum_{x \ge 0} (a^{z} d^{\ell})^{x} = A^{z} \sum_{\ell \ge 0} \binom{z}{\ell} \frac{(-1)^{\ell} C^{\ell}}{1 - a^{z} d^{\ell}}$$
(2.3)

where the reversion of the order of summation was justified because of the absolute convergence of the sum for $\Re z > 0$. The sum in the last line gives a valid expression for f(z) for every complex number z which is not a solution of any of the equations $1 - a^z d^\ell = 0$. In the points $z_{\ell, x} = -\ell \frac{\log d}{\log a} + \frac{2x\pi i}{\log a}$ with $\ell = 0, 1, ...$ and $x \in \mathbb{Z}$, there are simple poles with residue

$$A^{z_{\ell,x}} \begin{pmatrix} z_{\ell,x} \\ \ell \end{pmatrix} \frac{(-1)^{\ell-1}C^{\ell}}{\log a}.$$

The Contours of Integration

In order to be able to deform the contour of integration, we need an estimate for f(z) along the vertical line $\Re z = -u$. For this purpose, we write

$$f(z) - \frac{A^{z}}{1 - a^{z}} = \sum_{x>0} A^{z} a^{xz} ((1 - Cd^{x})^{z} - 1)$$

and observe the inequality $|(1-Cd^x)^z-1| \le \min(2,|z|Cd^x)$. This yields

$$\left| f(z) - \frac{A^{z}}{1 - a^{z}} \right| \le A^{-u} \left(\sum_{0 \le x \le \log|z|} 2|a|^{-xu} + |z| \sum_{x > \log|z|} a^{-xu} C d^{x} \right) \ll |z|^{\alpha}$$
 (2.4)

for $|d| < a^u < 1$ and $\alpha = -u \log \alpha$.

We are now ready to start the deformation of the contour of integration: we take \mathcal{C}' as the new contour and write

$$\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z) dz$$

$$= \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z) dz - \sum_{z=z_{i}} \operatorname{Res}_{z=z_{i}} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z), \tag{2.5}$$

Notice that there is a second-order pole at 0. Computation of residues yields (with $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$)

$$\operatorname{Res}_{z=0} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z) = \frac{1}{\log a} H_{n} + \frac{\log A}{\log a} - \frac{1}{2},$$

$$\operatorname{Res}_{z=\chi_{x}} \frac{(-1)^{n} n!}{z(z-1)\cdots(z-n)} f(z) = \frac{A^{\chi_{x}}}{\chi_{x} \log a} \frac{n! \Gamma(1-\chi_{x})}{\Gamma(n+1-\chi_{x})} \quad \text{for } x \neq 0,$$
(2.6)

where $\chi_x = \frac{2x\pi i}{\log a} = z_{0,x}$.

Shifting the upper, the lower, and the right part of \mathcal{C}' (cf. the figure) to infinity and observing that the integrals over these parts of the contour vanish then yields

$$\mathbb{E}_{n} = \frac{1}{\log \frac{1}{a}} H_{n} - \frac{\log A}{\log a} + \frac{1}{2} - \sum_{x \in \mathbb{Z} \setminus \{0\}} \frac{A^{\chi_{x}}}{\chi_{x} \log a} \frac{n! \Gamma(1 - \chi_{x})}{\Gamma(n + 1 - \chi_{x})}$$

$$- \frac{1}{2\pi i} \int_{-u - i\infty}^{-u + i\infty} \frac{(-1)^{n} n!}{z(z - 1) \cdots (z - n)} f(z) dz.$$
(2.7)

We now use the well-known asymptotic expansions

$$H_n = \log n + \gamma + O\left(\frac{1}{n}\right)$$
 and $\frac{n!}{\Gamma(n+1-\chi_x)} = n^{\chi_x} \left(1 + O\left(\frac{x^2}{n}\right)\right)$

(by Stirling's formula) to formulate our main result.

Theorem 1: The expected maximal lifetime \mathbb{E}_n of n independent players each of which has the Fibonacci distribution (or geometric distribution of order 2) fulfills, for $n \to \infty$,

$$\mathbb{E}_{n} = \log_{1/a} n - \frac{\gamma + \log A}{\log a} + \frac{1}{2} - \varphi(\log_{1/a} n) + O(n^{-u}), \tag{2.8}$$

for $0 < u < \min(1, \frac{\log|d|}{\log a})$, and φ denotes a continuous periodic function of period 1 and mean 0 given by the Fourier expansion

$$\varphi(t) = \frac{1}{\log a} \sum_{x \in \mathbb{Z} \setminus \{0\}} A^{\chi_x} \Gamma(-\chi_x) e^{2x\pi i t} = \frac{1}{\log a} \sum_{x \in \mathbb{Z} \setminus \{0\}} \Gamma(-\chi_x) e^{2x\pi i (t - \log_{1/a} A)}, \tag{2.9}$$

which is rapidly convergent due to the exponential decay of the Γ -function along vertical lines. The remainder term is obtained by a trivial estimate of the integral and the (uniform) O-terms in Stirling's formula.

3. EXTENSIONS

Here, we briefly sketch the more general case where k consecutive hits are necessary to kill a player. In this case, the probability $\mathbb{P}(X=x)$ was derived by Philippou and Muwafi [9] in terms of multinomial coefficients. As described in the introduction, there is a bijection to the sequences

$$\{0, 10, 110, ..., 1^{k-1}0\} \cdot 1^k,$$

which yield the probability generating function

$$\frac{p^k z^k}{1 - qz - pqz^2 - \dots - p^{k-1}qz^k} = \frac{p^k z^k (1 - pz)}{1 - z + qp^k z^{k+1}}$$
(3.1)

for the lifetime of a player (cf. [1, pp. 299ff], [3, p. 428], [7, p. 207], [8]). Likewise, the generating function of $\mathbb{P}\{X > x\}$ is given by

$$\frac{1 - p^k z^k}{1 - z + q p^k z^{k+1}}. (3.2)$$

Again we factor the polynomial in the denominator

$$1-qz-pqz^2-\cdots p^{k-1}qz^k=(1-\alpha z)(1-\alpha_2 z)\cdots (1-\alpha_k z)$$

with $|\alpha| > |\alpha_2| \ge \cdots \ge |\alpha_k|$ ($\alpha > 0$). Then we have, by partial fraction decomposition and extracting coefficients,

$$\mathbb{P}\{X > x\} = A\alpha^x + A_2\alpha_2^x + \dots + A_k\alpha_k^x \tag{3.3}$$

with $A = \frac{\alpha(\alpha - p)}{q((k+1)\alpha - k)}$ and similar expressions for $A_2, ..., A_k$.

For the expectation of the maximal lifetime of n players, we obtain

$$\mathbb{E}_{n,k} = \mathbb{E} \max\{X_1, ..., X_n\} = \sum_{m=1}^{n} (-1)^{m-1} \binom{n}{m} g(m)$$

with

$$g(z) = \sum_{\ell \ge 0} (A\alpha^{\ell} + \dots + A_k \alpha_k^{\ell})^z \text{ for } \Re z > 0.$$

For the purpose of analytic continuation of g, we consider $g(z) - \frac{A^z}{1-\alpha^z}$ and proceed as in (2.4) to obtain the continuation and a polynomial estimate for g(z) along some vertical line $\Re z = -\varepsilon$ for sufficiently small $\varepsilon > 0$.

We are now ready to perform similar calculations as in Section 2. Thus, we obtain

Theorem 2: The expected maximal lifetime $\mathbb{E}_{n,k}$ of n players each of which has the geometric distribution of order k satisfies

$$\mathbb{E}_{n,k} = \log_{1/a} n - \frac{\gamma + \log A}{\log a} + \frac{1}{2} + \psi(\log_{1/a} n) + O(n^{-\varepsilon})$$

for $0 < \varepsilon < \min(1, \frac{\log |\alpha_2|}{\log \alpha})$ and a continuous periodic function ψ of period 1 and mean 0 whose Fourier expansion is given by

$$\psi(t) = \frac{1}{\log \alpha} \sum_{x \in \mathbb{Z} \setminus \{0\}} A^{\chi_x} \Gamma(-\chi_x) e^{2x\pi i t} = \frac{1}{\log \alpha} \sum_{x \in \mathbb{Z} \setminus \{0\}} \Gamma(-\chi_x) e^{2x\pi i (t - \log_{1/\alpha} A)}$$

where $\chi_x = \frac{2x\pi i}{\log \alpha}$.

By bootstrapping we find that, for $k \to \infty$,

$$\alpha \sim 1 - qp^k + \cdots$$
 and $A \sim 1 + kqp^k + \cdots$.

REFERENCES

- 1. W. Feller. An Introduction to Probability Theory and its Applications. Vol. 1. New York: Wiley, 1957.
- 2. P. Flajolet R. Sedgewick. "Digital Search Trees Revisited." SIAM J. Comput. 15 (1986): 748-67.
- 3. N. L. Johnson, S. Kotz, & A. W. Kemp. Discrete Univariate Distributions. New York: Wiley, 1992.
- A. W. Kemp. "Second-Order Linear Recurrence Distributions and Their Properties." Manuscript.
- 5. P. Kirschenhofer & H. Prodinger. "A Result in Order Statistics Related to Probabilistic Counting." Computing 51 (1993):15-27.
- 6. D. E. Knuth. The Art of Computer Programming. Vol. 3. Reading, Mass.: Addison-Wesley, 1973.
- 7. A. N. Philippou. "Distributions and Fibonacci Polynomials of Order k, Longest Runs, and Reliability of Consecutive-k out-of-n: F Systems." In Fibonacci Numbers and Their Applications I 2:203-227. Ed. A. N. Philippou, G. E. Bergum, & A. F. Horadam. Dordrecht, Reidel, 1986.
- 8. A. N. Philippou, C. Georghiou, & G. N. Philippou. "A Generalized Geometric Distribution and Some of Its Properties." Stat. and Probab. Letters 1 (1983):171-75.
- 9. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success and the Fibonacci Sequence of Order k." The Fibonacci Quarterly 20.1 (1982):28-32.
- 10. H. D. Shane. "A Fibonacci Probability Function." The Fibonacci Quarterly 11.5 (1973): 517-22.
- 11. W. Szpankowski & V. Rego. "Yet Another Application of a Binomial Recurrence: Order Statistics." Computing 43 (1990):401-10.
- 12. C. Tallie & G. P. Patil. "The Fibonacci Distribution Revisited." Communications in Statistics—Theory and Methods 15 (1986):951-59.
- 13. E. Zeckendorf. "Représentations des nombres naturels par une somme des nombres de Fibonacci ou des nombres de Lucas." Bull. Soc. Royale Sci. Liège 41 (1972):179-82.

AMS Classification Number: 05A15