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THE FIBONACCI KILLER®
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1. INTRODUCTION

We consider the following stochastic process: Assume that a "player"” is hit at any time x with
probability p. However, he dies only after two consecutive hits. We might code this process by 0

and 1, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described
by
{0,10}*-11.

The notation {0, 10}* denotes arbitrary sequences consisting of the blocks 0 and 10, the block 11
are the fatal hits. Notice that {0, 10}" are exactly the admissible blocks in the Fibonacci expansion
of integers (Zeckendorf expansion, cf. [13]). Accordingly, the generating function

p*z?
1- gz — pgz*

has as the coefficient of z* the probability P{X = x} that the lifetime X of a player is exactly x.
The generating function (1.1) 1s known in the context of the Fibonacci distribution or geometric
distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12].

Here, we are interested in » (independent) players subject to this game and ask when (in the
sense of a mean value) the last player dies.

Without the "Fibonacci" restriction, i.e., the maximum of » (independent) geometric random
variables, this problem has been studied previously and has some applications. (Compare [5],
[11].)

We have obviously

(1.1)

P{max{X,,..., X,} <x}=(P{X <x})". (1.2)

The generating function of P{X > x} is given by
1+ pz
1-gz- pgz*

We now factor the denominator of this function to obtain

1-gz- j::ng,vz2 =(1-az)(1-b2)
with

_q++q +4pq _g-Ng +4pg
=4 5 and b= 3 .

a

*This research was supported by the Austrian-Hungarian cooperation project 10U3.
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THE FIBONACCI KILLER

Performing the partial fraction decomposition and extracting coefficients yields

1 x x
P{X > x}=—5 _(a*(a+p)-b"(b+Dp)).
Ve +4pq
Using (1.2) we obtain the expectation for the maximum lifetime of n players
[ n)
£ =Emax{X;,... X,} = 2| 1- -t (@@+p-b0rp) | | O
x20 ! \fﬁ}' +4pq j
By the binomial theorem we obtain
E = Z (—1)’“"(};!)2 (Aa”™ — Bb*)", (1.4)
m=1 x20
where we use the notation
2 2
A=—22F e e g B il :

J@* +4pq  a\q +4pq

1445 p _ 1=f5 _ 54345 _ 5345

o b=, 4 = s, =y
We will find that E_ ~ log,,, 7 and refer for the (technical) proof and a more precise statement

to the next section.

J&+4pg  q\q' +4pq

1

For example, in the symmetric case p =g =3, WC have a =

7. ASYMPTOTIC ANALYSIS

In (1.4) we found the expression

- 5 _ym-1 .
IEH-”I_E_;I( ) (m)/(m), 2.1
containing the function

f(z)= Z(Aax — Bb*)* for NRz>0.

x=20

For an expression of that type we can write 2 complex contour integral

E _ 1 (-1)"n!
" 2mi J,2(z=1) - (2= 1)

f(2)dz, (2.2)

where C is a positively oriented Jordan curve encircling the points 1, 2, ..., » (and no other integer
points); this can easily be checked by residue calculus.

We will use Rice's method to obtain an asymptotic expansion for E,. For this we refer, €.g.,
to [2] and [6]. This method is based on a deformation of the contour of integration. For this
purpose we need an analytic continuation of the function £ to a region containing a half-plane
Rz > —¢ for £ >0 (we actually give an analytic continuation to the whole complex plane).

Using the notation C =B/ Aandd=>b/a (observe that |C|<1 and |d |< 1) we obtain
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f(2) = AY a=(1-Cad*y ..Afzaﬂz(—l) Cfdﬂ()

x=20 x20 20

R () =

£20 x20 £20

(2.3)

where the reversion of the order of summation was justified because of the absolute convergence

of the sum for Rz>0. The sum in the last line gives a valid expression for f(z) for every

complex number z which is not a solution of any of the equations 1-a°d‘ =0. In the points
—ploed | T ith #=0,1,... and x €Z, there are simple poles with residue

Toga T Toga loga
AEE-I(ZH,I] (_ l)E—ICE i

£ loga
+ﬂz
| ‘
tx —_—
15 {'1 2 3 & . -n‘E‘n-—l.n%_E
. C
Rz=x
L I & i i
x J
. >

The Contours of Integration

In order to be able to deform the contour of integration, we need an estimate for f(z) along
the vertical line Rz = —u. For this purpose, we write

_ZAE “((1-Cd™y* -1)

x20

and observe the inequality |(1- Cd*)" —1|< min(2,|z|Cd™). This yields

f(z

f(z)— ; {Aﬁ“[ Z 2la[ ™ Hz| Za'”“Cd"}:ﬂqz]‘I (2.4)

0=x<log|z| x>log|z|

for |d|<a” <1and a =-uloga.

We are now ready to start the deformation of the contour of integration: we take (' as the
new contour and write

1 (-1)"n!

27 Ez(z—l)...(z—n)f(Z)dZ 2.5)
3 (—-1)"n! (=1)"n! ¥

2 s 2(z—1) ---(z—n)f(z)dz Zl}—ez? z(z-1) ---(z—n)f( )
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Notice that there is a second-order pole at 0. Computation of residues yields (with H_=1 +%+
o)

_1)*n!
R (=1)"n! Fiy= 1 Hn+10gA—l,
z=0 z(z—1)---(z—n) loga loga 2 (2.6)
(—1)"n! A% alT(1-z.) |
R = 2 forx#0
z=§§ z(z—-1)---(z—n) /(@) z.loga I'(n+1-yx,) IR
where 7, = foog = 2, -

Shifting the upper, the lower, and the right part of C’ (cf. the figure) to infinity and observing
that the integrals over these parts of the contour vanish then yields

e 1 7 logd 1 Z A*  nlT(-yx,)
" logl " loga 2 _Fuo x.logal(n+1-y,)
—u-+ico (27)
1 (-1)"n!
. dz.
27 ) z(z=1)---(z—n) /@)

We now use the well-known asymptotic expansions

H =lngn+7+0[l] and % =n**1+0 .l
g n IF'(n+1-y%,) n

(by Stirling's formula) to formulate our main result.

Theorem 1: The expected maximal lifetime E, of »n independent players each of which has the
Fibonacci distribution (or geometric distribution of order 2) fulfills, for n — o,

+logAd 1 -
oge 2~ 90 +00™), (2.8)

E,=log,,n—

for 0<u < min(], l;'; i":'), and ¢ denotes a continuous periodic function of period 1 and mean 0

given by the Fourier expansion

1 Z AIIF(_II)EEMI _ 1 Z I—-(_Zr)ezxi‘ﬁ(f—lﬁglm A}? (29)
loga xeZ\{0} loga xeZ\{0}

p(1) =

which is rapidly convergent due to the exponential decay of the I'-function along vertical lines.
The remainder term is obtained by a trivial estimate of the integral and the (uniform) O-terms in
Stirling's formula.

3. EXTENSIONS

Here, we briefly sketch the more general case where k consecutive hits are necessary to kill a
player. In this case, the probability P(X = x) was derived by Philippou and Muwafi [9] in terms
of multinomial coefficients. As described in the introduction, there is a bijection to the sequences

(0,10, 110, ..., 1*7'0} - 1%,
which yield the probability generating function
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p'z z*(1- pz) G.1)
B - < | J-: k+1 '
l~gz—pgz" — -~ P qz 1 —-z+qpz

for the lifetime of a player (cf. [1, pp. 29911], [3, p. 428], [7, p. 207], [8]). Likewise, the generat-
ing function of P{X > x} 1s given by

l—pkzk
1— Z+qpk k+1" (32)

Again we factor the polynomial in the denominator
1-gz-pgz’ — - p"7'qgz" = (1-a2)(1- @2) -+ (1~ ;2)

with |a|>|a, |2 =|a, | (& >0). Then we have, by partial fraction decomposition and extracting
coeflicients,

P{X>x}=Aa"+ A,a; ++-+ 4, a; (3.3)

with 4 = q(;ﬁ;ﬁk) and similar expressions for 4,,..., 4, .

For the expectation of the maximal lifetime of n players, we obtain

E, . =tEmax{Xl,...,Xﬂ}:;(—1)“‘1[’;,)&@
with
g(2)=> (Ada*+--+ 4.a;)" for Rz>0.

£20

For the purpose of analytic continuation of g, we consider g(z)— — and proceed as in (2.4) to
obtain the continuation and a polynomial estimate for g(z) along some vertical line Rz = —¢ for
sufficiently small £ > 0.

We are now ready to perform similar calculations as in Section 2. Thus, we obtain

Theorem 2: The expected maximal lifetime E, , of » players each of which has the geometric
distribution of order k satisfies

r 184 21 y(logy,n)+O(™)
loga 2

[En, b= ngL’a n-—

for 0 <& < min(], 1?5;”;') and a continuous periodic function y of period 1 and mean 0 whose

Fourier expansion is given by

W(I) = ; Z AI:F(_ZI)ezxmr — __] Z r(_zx)ezm(f_lﬂgla’a A)
log @ 7oy 08 & ,e7:\{0)

2x7mi
logax -

where y, =

By bootstrapping we find that, for £ — oo,

a~1-gp*+-- and A~1+kgp* +---
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