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Abstract. The language operator Init(L)={x:there is a y, such that xye L} is well-known.
Replacing “there is a y,...” by “there are infinitely many y,...” a new operator Anf(L)=
{x :there are infinitely many y, such that xy € L} is obrained.

Furthermore, there are language operators, for which definitions structurally similar to those of
Init and Anf can be given.

0. Introduction

The language operator Init(L)= {x: there is a y, such that xy € L} is well-known.
Replacing “there isa y,...” by “there are infinitely many y, ... a new operator
Anf(L)={x: there are infinitely many y, such that xy € L} is obtained.

There are common properties of Init and Anf, caused by the fact, that Init as well
as Anf pick out initial subwords of words in L, discussed in Chapter 2.

On the other hand the behaviour of Anf is quite different from that of Init, e.g.
the recursive (recursively enumerable) languages are not closed under Anf
(Chapter 3).

In Chapter 4, the definition of Init and Anf is generalized, and the class of the
resulting operators is examined.

1. Basic Definitions

An alphabet X is a finite nonempty set of symbols. 2* denotes the set of all words
over X, 3" =3*--{¢}, where ¢ denctes the empty word. For x € 3* |x| is the length
of x and x® is the mirror image of x (eR=¢,a, -- ak=a, - a,). If aes, then
ny(x) is the number of symbols a in x.

A grammar is a quadruple G = (@, X, P, S), where @ is the alphabet of the
nont~+minals, X is the alphabet of the terminals, P is a finite set of rules a - 3,
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ac(@ul), Be(@uUZI)* and Se @ is the start symbol. Derivations in G are
defined in the usual way and L(G) denotes the language generated by G.

If for all @ > B e P |a|<|B|, then G and L(G) are called context-sensitive. If for
alla>BePacd and Be(PuUX)¥ then G and L(G) are called contexifree. If
furthermore B € 3®*, then G is called a Greibach-normalform-grammar.

A finite automaton is a quintuple M =(K, %, §, qo, F), where K is a finite
nonempty set of states, X is the input alphabet, 8 maps Kx ¥ into K, go€ K is the
initial state and F < K is the set of final states. The language accepted by M is
denoted by T(M).

In this paper the following model of a Turing-machine is used: A Turing-
machine is a sextuple T = (K, X, I, 8, qo, F), where K is the finite set of states, X is
the input alphabet, I' is the alphabet of tape sy::zbols, containing b (the blank
symbol). It is assumed that ¥ < I'-{b}. 6 is a partial mapping from K XTI to
K xI'x{L, R}, qo€ K is the initial state, F < K is the set of final states.

A configuration of T is word in I'™KI™. The relation — on the set of all
configurations is defined as follows: al—g iff

(i) @ =uqCv, B =uDpv and 8(q, C)=(p, D, R) or

(i) @ =uEqCv, B = upEDv and é(q, C)=(p, D, L) or
(iii) @ =uq, B =uDp and 8(q, b)=(p, D, R) or
(iv) @ =uEq, B = upED and 8(q, b)=(p, D, L) or

(v) a =4qCv, B =pbDv and 6(q, C)=(p, D, L) or
(vi) @ =q,B=pbD and 8(q, b)=(p, D, L), where u,vel™; q,peK;C,D,E€T.

= is thz reflexive and transitive closure of . The language accepted by T is
L(T)={w e X*: there are u, v € I'*, q € F, such that qowliuqv}.

If L < 3%, then Init(L)={x: there is a y, such that xy € L}.

IfL,, LocX* then L,\L,={x: there isa y € L, such thai yx € L,}.

For each L ¢ 3* the binary relation - on 2* is defined by x 1y, iff for all z ¢ Z*
xzeLiffyzelL.

If there is no danger of confusicn a language {w} is denoted by w.

All results of the theory of formal languages, which are used in this paper, can be
found in [1].

2. The operator Anf and some of its Praperties

Definition 2.1. For each language L let Anf(L)={x: there are infinitely many y,
such that xy e L}.

(Anf is an abbreviation of the German word Anfang (i.e. begin).)

As Init(L)={x: there exists a y such that xy € L}, Anf(L)< Init(L) always holds.
First a property of Anf is established, which is later used:
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Theorem 2.2. L is infinite if and only if Anf(L) is infinite. i is finite if and only if
Anf(L)=6.

Proof. Let I. € 3* be infinite and n =0 be fixed.

infinite. Let ¢: L' > X" be defined by ¢(xy)=x if l

set into a finite set. By the pigeon hole principle there is a x € 2", such that ¢ "'(x) is
infinite, that means, that there are infinitely many y, such that xye L' (<L) and
therefore x € Anf(L).

Therefore, for each n =0 Anf(L)n X" # 0 and hence Anf(L) is infinite.

Let conversely Anf(L) be infinite and x € Anf(L). Then for infinitely many y is
xy € L and therefore L is infinite.

As for a finite L Anf(L)=0, the second statement of the theorem is obvious.

Many language operators T are defined in the following manner: First T(w) is
defined for all w e £*, and then T is extended to B(E*) by T(L)=Uwer T(w). The
rollowing corollary shows that Anf does not belong to this sort of operators.

Corollary 2.3. There is no word operator T, such that for all L Anf(L)=Jyer T(W).

Proof. If there would be such an operator T, then for all w Anf({w})=T(w)=0
would hold. If L is infinite, then Anf(L) is infinite but | J,,c; T(w)=0, which is a
contradiction.

Now sume examples are given.

Example 2.4. Let L < a™ be infinitc. Then Anf(L)=a*. (By Theorem 2.2 for each
n=0Anf(L)na" #9.)

Example 2.5. Let L={a"5": n=0}. Then Anf(L)=a*. (The word a' can be
completed to a word in L by concatenation with each of the infinitely many wcrds
a"b**', n =0. Conversely, a word a’b’ where 0<j<i can be completed to a word
in L only by concateration with b'™".)

Example 2.6. Let L={we{a, b}*: n,(w)=ny(w)}. Then for each we{a,b}*
wa™ ™6 ") (ap)* < L and therefore Anf(L)={a, b}*.

Example 2.7. Let L<X3* an arbitrary language and c€ZX. Then Anf(Lc*)=
Init(Lc®). (If x € Init(Lc*), then there is a y, such that xy € Lc*. Then xyc* < Lc*
and therefore x € Anf(Lc*).)

Now some properties of Anf, concerning L, N, - ,*, Init are given:

Theorem 2.8. Anf(L,u L;)= Anf(L,)u Anf(L>).
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Proof. Let we Anf(L,UL;). Then there are infinitely many y, such that wye
L;uL,. Then there are infinitely many z, such that (without loss of generality)
wz € L, hence w € Anf(L,)< Anf(L,)u Anf(L>).

Let conversely (without loss of generality) be we Anf(L,). Then there are
infinitely many y, such that wy e Ly Ly U L,, hence w € Anf(L; U L>).

Theorem 2.9. Anf(L,n L,)< Anf(L;)n Anf(L,).

Proof. Let we Anf(L;nL;). Then there are infinitely many y, such that wye
LinLy,. AsLinLycL;, we Anf(L;) holds fori=1, 2.

The following example shows, that equality as well as inequality can hold in
Theorem 2.9:

Example 2.10. Anf((a®)*n(a®)*a)=0, but Anf((@’)*)n Anf((a’)*a)=a*. If
L\AL, (=(L,—L,)u(L,—L,))is finite, then Anf(L,L;)= Anf(L,)n Anf(L,).

A relation analogous to Init(L,L;)=Init(L,)u L Init(L,) (L:#@) shows tie
following theorem:

Theorem 2.11. Let L, #0. Then
Init(L,)u L,Anf(L,) if L, is infinite

Anf(L1L2)={
Anf(L,) if Ly is finite.

Proof. First let L, be infinite. Let we Anf(L,L,). If welnit(L,), then we
Init(L,ju L,Anf(L;). If we Init(L,), then there are y,, y,, ..., such that wy,e L,L,
(i=1,2,...). Hence wy,=uv, uicL,,vieL,. As welnit(L,), w = wui, u; #¢,
i=1,2,.... By the pigeon hole principle there are a u;, (w = u;ui, 4, € L) and
infinitely many indices iy, i, . ... such that w, v, = wy; = u;,u;,yi.- As ulyi <La,
u;, € Anf(L,) and therefore w = u;,u;, € LiAnf(L,).

Let conversely be w € Init(L,) v L, Anf(L,). If w € Init(L,), then there is a z, such
that wz € L, and as zL, is infinite and wzL,< L,L,, w € Anf(L,L) holds.

If we LAnf(L;), then w=xv, x €L, y € Anf(L,). There are infinitely many z,
such that yz € L, and therefore wz =xyz € L,L,. Hence w € Anf(L,L>).

Now let Ly={vy,...,vs} (2=1) be finite and K =max;<i<a |v:l. Let we
Anf(L,L,). Then there are infinitely many y (without loss of generality |y|=k),
such that wy e L,L,. As L, is finite, there is a v € L, (pigeon hole principle), such
that infinitely niany y can be written as y = zv, where wz € L,. Hence, there are
infinitely many z, such that wz € L,, therefore w € Anf(L,).

If conversely w e Anf(L,), then there are infinitely many y, such that wye L;.
Then wyv € L,L, always holds, and therefore w € Anf(L,L>).
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Theorem 2.11 does not hold for L, =@ (Anf(2*@)= Anf(@)=0# 3* = Anf(Z*)).
Theorem 2.12. Let L #0 and L #{e}. Then Anf(L*)=Init(L*).

Proof. It is only to show that Init(L*)< Anf(L*). Let w € Init(L*), then there is a x,
such that wxeL*. Let zeL and z #¢. Then for all i wxz'e L* and therefore
w € Anf(L*).

Corollary 2.13. Let L be infinite. Then Anf(L*)=2 L* Anf(L).

Proof. By Theorem 2.11 and Theorem 2.12 Anf(L*)=Anf(es UL*L)=
Anf(e)u Anf(L*L)=Init{L*)u L*Anf(L)= Anf(L*)u L*Anf(L).

A further relation between Anf and Init, as well as the idempotence law for Anf
shows the following theorem:

Theorem 2.14. Anf(L)= Init(Anf(L))= Anf(Init(L))= Anf(Anf(L)).

Proof. (i) As L'<cInit(L’) for arbitrary L', Anf(L)< Init(Anf(L)) holds.

(ii) Let w € Init(Anf(L)), then there is a x, such that wx € Aaf(L). Then there are
infinitely many y, such that wxy € L(cInit(L)), therefore w € Anf(Init(L)). Hence
Init(Anf(L)) = Anf(Init(L)) holds.

(iii) Let w < Anf(Init(L)) Then there are infinitely many y, such that wye
Init(L). Therefore there are infinitely many pairs y, 2z, such that wyz € L. Hence
we Anf(L). Let M ={y: wy e L}. Then M and also Anf(M) are infinite (Theorem
2.2). For each y € Anf(M) there are infinitely many 2z, such that yze M and
therefore wyzeL. Hence wye Anf(L) for infinitely many y and so we
Anf(Anf(L)). Hence Anf(Init(L))< Anf(Anf(L)) holds.

(iv) Let w € Anf(Anf(L)). Then there are infinitely many pairs y, z, such that
wyzeL and therefore is weAnf(L). Hence Anf(Anf(L))< Anf(L), which
completes the proof.

Finally those languages are characterized, which can occur as images under Anf.

Theorem 2.15. For given L there exists a L' such that L = Anf(L") if and only if (i)
and (ii) hold:

@i) Init(L)< L,

(ii) For each w c L there is a x # &, such that wx e L.

Proof. First L is assumed to have properties (i) and (i), and L = Anf(L) is shown:

Let w € L, then, by (ii), there is a x, # ¢, such that wx, € L, then again by (ii), there
is a x5 # &, such tha: wx;x, € L and so on. Therefore {wx,, wx1x2, wx1x2X3,...}S L
and so w € Anf(L).



166 H. Prodinger and F.J. Urbanek

Let conversely be w € Anf(L). Then there are infinitely many y, such that wy e L.
Then w € Init(L) and by (i), we L.

Now, L = Anf(L') is assumed. As Init(L)= Init(Anf(L"))= Anf(L")= L, (i) holds
for L.

Let we .. As L = Anf(L")= Anf(Anf(L')), there are infinitely many y, such that
wy € Anf(L'"). Therefore there is at least one y # ¢, such that wy € Anf(L")=L and
so (ii) holds.

3. Families of languages and Anf

First, it will be shown, that the family of the regular languages and the family of
the contextfree languages are closed under Anf; next, that the family of the
contextsensitive languages and the family of the recursively enumerable languages
are not closed under Anf.

Theorem 3.1. If L is regular, -en Anf(L) is regular.

Proof. Let M = (K, %, 8, gn, i) be a finite automaton, such that T(M)=L. Let
M, =(K, %, §, qo, F,) where F, = {q € K : there are infinitely many x € 3*, such that
8(q, x)e F}.

Then w € T(M,) holds if and only if &(qe, w)€ F\. This is equivalent with the fact,
that there are infinitely many x, such that §(6(q¢, w), x)e F,i.e. wxe T(M)=L, and
that means w € Anf(L).

From this it follows, that T(M;)= Anf(L), and therefore Anf(L) is regular.

As the question, whether a given finite automaton accepts infinitely many words,
is decidable, tor each M a finite automaton M), such that T'(M;)= Anf(T {M)), can
be effectively constructed.

Corollary 3.2. Let L = 3™ be a regular language and M a finite automaton, which
accepis L.

Then Anf(L)=Z* holds if and only if M contains no trap. (A trap is a state q, such
that there is no x € 2*, for which é(q. x)eF))

Proof. For M let be M, constructed as in the proof of Theorem 3.1.

If there would be a trap q in M, then for all x §(q, x)& F would hold, and
therefore g2 F,. Let w be a word such that §(qo, w)=q. Then we T(M,)= Anf(L)
and hence Anf(L)# 2™ holds.

Conversely it is assumed, that Anf(L)# 3*. Then there exists a word w, such that
we Anf(L), i.e. 8(qo, w)€ Fy. Therefore there are culy finitely many x, such that
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6(5(qo, w), x)€ F. Let y be a word which is longer than the longest of these words x.
Then 8(8(qo, wy), z)£ F for all z and therefore 8(qo, wy)is a trap.

Theorem 3.3. If L is contextfree, then Anf(L) is contextfree.

Proof. Let be G=(d, 3, P, S) a contextfree grammar in Greibach-normalform,
such that L(G)=L.

LetL'={aec(@uUX)*:S => a}. Then L' is contextfree. Furth ermore let be @' =
{A € ®: there exist mﬁmtely many words x, such that A => x}.

Then w € Anf(L) holds if and only if there is a word wﬂ in L', such that there is a
nonterminal in 8, which is also in @'.

Therefore the set L' " 3*®*d'P* contains a word of the form wg if and only if
w € Anf(L) holds.

Now the homomorphism h:(®PuUZ)*>3* is defined by h(a)=a, ac X and
h(A)=¢, Ae @, then h(L' " Z*P*@'d*)= Anf(L) and thus Anf(L) is contextfree.

As the question, whether a given contextfree graramar generates an infinite
language is decidable, for each contextfree grammar G a contextfree grammar G,
for which L(G,)= Anf{L{G)) can be effectively constructed.

If L < 2* is contextfree but not regular and c£ X, then Lc* is also contextfree,
and from Example 2.7 it follows that Anf(Lc*)n2*c =Lc. This language is
contextfree but not regular. Therefore Anf(L) is for given contextfree L not
necessarily regular.

Theorem 3.4. The family of contextsensitive languages is not closed under Anf.

Proof. Let T =(K, 3, I, 8, qo, F) be a Turing-machine, which accepts a language L,
such that 2* — L is not contextsensitive (such a language does exist). Without loss of
generality it can be assumed that 6(q, ¢) is not defined iff g € F (T halts on a word
w, iff we L)

Let L,={$a,$ - $a,$8:n=1 and there is a welX¥, such that a;=qow,
; l-—a.-ﬂ(l sjisn- 1)} ($E F).

Then $qow$ € Anf(L,) iff we L.

Therefore Anf(L,)N $go2*$ = $q0(X* — L)$ and Anf(L,) is not contextsensitive.

It remains to show that L, is contextsensitive:

Let G=(S,S,, T, T, U}u{Tx: Xe'uK}u{X": XeluK}, TUK u{$}, P,
S), where P contains the following rules (forallae 2; X, YeI'UK;p,qeK;C, D,
Eel).

(1) S- $QoS|, Si->a$,, $1~> Us$,;

(2) US> $8, US> TS$$;

(3) X'T>TX', XT>X'Tx, $T->3T', TxY > YTx, Tx$->T$X, T'X'-> XT',
T'$->3U;
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4) UC~»CU;

(5) UqC »DpU if 8(q,C)=(p,D,R), Uq$~>DpUS if 8(q,b)=(p,D,R),
EUqC -»pEDU if 8(q,C)=(p,D,L), EUq$~>pEDUS$ if 5(q,b)=(p,D,L),
$UqC - $pbDU if 8(q, C)=(p, D, L), $Uq$ - $pbDUS if (q, b)= (¢, D, L).

Then G is contextsensitive and generates L, as follows:

(i) By rules (1) all derivations S 3 $q0wUS$, weI* are possible. Applying
U$- 33 to $qowUS$, $qow$$ = $a,88 € L, can be derived.

(ii) Suppose there is a derivation S = $a,8 - -+ $a,U$. Then there are two
possibilities:

(a) US> $$leadsto $a,$ - - - Sa.$8€L,.

(b) US$>T$$ leads to $a,§---%a,T8$ from which, using rules (3)
$a,8 - - - $a,8Ua,$ is obtained.

If a,=uqv and q¢F, then there is a unique configuration a,+; such that
a,—a,;; and rules (4), (5) guarantee that Ua, = an,+1U. Hence
$a,8 - - - $a,$a,.+1US$ is obtained.

If a, = uqv and g € F then o(g, C) is not defined and no word consisting only of
terminals can be obtained.

Corollary 3.5. The family of recursively enumerable languages is not closed under
Anf,

Proof. Choosing T as in Theorem 3.4, but so that 3*—L is not recursively
enumerabie (such a language exists), the statement is obtained.

There are also contextsensitive (recursively enumerable) languages, such that
Anf(L) is contextsensitive but not contextfree (recursively enumerable but not
contextsensitive). (For this see Example 2.7.)

In Theorem 2.15 a criterion, when a language can be an image under Anf, is
given. Yet this condition need not hold for arbitrary languages. Therefore the
inclusion £ = Anf(2) cannot be expected for an arbitrary family of languages. But a
result in this direction is:

Theorem 3.6. For all families of languages £ L < F(Anf(F())) holds, where for
given ' {(L') is the smalles” family of languages containing ' and being closed
under homomorphism, concatenation with regular sets and intersection with regular
sets.

Proof. Let Le{, L c3* cg3. Then Lc* € F(R), Anf(Lc*) N I*c = Lc (see for this
Example 2.7), and therefore Le F(Anf(F(L))). (L = h(Lc), where the homomor-
phism 4 is defined by h(a)=a, ae X, h(c)=¢).
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4. A generalization of Anf

Throughout the rest of this paper X denotes a fixed alphabet.

If U denotes the set of all infinite languages, Anf(L) can be redefined as follows:
Anf(L)={x: x\L e ll}.

This representation causes the following gencralization of Anf:

Definition 4.1. For each set £ of languages over X the operator Anf; : B(Z*)->
B(Z*) is defined as follows:

Anfy(L)={xeX*: x\L e L}.

Remark. In language theory a family £ of languages is never empty. In this paper it
is convenient to allow £ to be empty. Therefore in Definition 4.1 “set” is used
instead of “‘family”.

As mentioned above, Anf;; = Anf holds.

It is possible to represent some other language operators as Anfg; this is shown in
the following theorems.

Lemma 4.2. Anfe(L) =[Anfe<(L)]". (L° (¥%) means complementation with respect to
Z*(BEH).)

Proof. we Anfy(L) holds if w\L=L, i.e. w\Lg¥". This is equivalent to
weg Anfuc(L).

Theorem 4.3. There are ,, ¥,, such that for all L Anf,,(L)=0 and Anfy,(L)=L.
Proof. Let 2, =0. Then there is no w such that w\Le®. Let ;={L=3*:eeL}.
Then w\LeQ, is equivaient to weL, and thus Anfy,(L)={w:w\Le;}=
{w:welL}=L.

Corollary 4.4. There are L3, L4, such that for all L Anfy (L)=2* and Anfe (L)=
L

Proof. Let ;=27 and £4,=25 (¥, ¥, from Theorem 4.3). Then the statement
follows from Lemma 4.2.

The following theorem shows that L—@ and L—ZX* are the only constant
mappings that can be represented as Anfy.

Theorem 4.5. Let A be a language, such that 0G A < 3*. Then there is no 2 such
that Anfe(L)=A forall L.
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Proof. It is assumed that the contrary holds. As < A € 3*, there are x, y, such
that x € A and y£ A. Let L be an arbitrary language. As x € A = Anfy(L), it foliows
that x\Le&. Then y\(y(x\L))=(x\L)e® and therefore ye Anfu(y(x\L))= A,
which is a contradiction.

It is also possible to represent Init as Anfy.
Theorem 4.6. Anfys+)—g(L)=Init(L).

Proof. x € Init(L) holds iff x\L # @. This is equivalent to x\L € B(Z*)— {0} and this
to x € Anfys+)-g(L).

The following theorem shows that beside of the the language operators above,
there is a non countable set of operators of the form Anfy.

Theorem 4.7. If &, # s, then there is a L, such that Anfy,(L)# Anfy,(L).

Proof. Let &, # <, and without loss of generality it is assumed that there is a L such
that LeL; and L€ ;. Then ¢ € Anfy,(L) but £ Anfu,(L). (This holds as e\L =
Le;and e\L=LgX,.)

The relations Anf(L,uL,)=Anf(L,)UAnf(L,) and Anf(L,nL,)c
Anf(L,)n Anf(L,) which are valid for Anf cannot be generalized to Anf. for
arbitrary sets ¥. Yet it is possible to characterize those sets &, for which these
relations are valid.

Lemma 4.8. Forall L,, L, A«fu(L, v L2)= Anfy(L,)u Anfy(L,) holds iff  has the
following property
If A€ and A< B, then Be L.

Proof. It is assumed that & h:s the given property. Let x c Anfe(L,) (Anfe(La)),
ie. x\L;eR(x\L,€8). Then also x\L;ux\Ly=x\(L,uL;)e® and therefore
x € Anfe(L, U L,). Hence Anfy L) U Anfe(L2) S Anfu(L, U Lo).

To show the converse let A (=¢\A)e®, AcB. Then ¢eAnfy(A)s
Anfg(A)u Anfy(B)< Anfy(A U B)= Anfe(B) and thus c\B =B e {.

Lemma 4.9. ForallL,, L, Anfy. L, ~ L)< Anfu(L)n Anfe(L>) holds iff £ has the
following property:
IfAc and A< B, then BeR.

Proof. It is assumed that { has the given property: If x € Anfe(L,NL,), then
x\(L1nLy)=(x\L;)n(x\L,) € L. Therefore all sets containing (x\L;)n(x\L>) as a
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subset are in L. Especially x\L;€ & and x\L,€ & hclds. and thus x € Anfu(L;)N
Anfy(L,).

Conversely itis assumed that Anf.(L; N L,) = Anfe(L,) » Anfae(L,) is always valid.
Let Ael and A< B. Then € € Anfy(A)= Anfu(A nB)< Anfu(A)n Anfe(B)<
Anfy(B) and thus Be £.

Corollary 4.10. The following two properties are equivalent:
@) forall L\,L, Anfy(L,uL;)2Anfu(L)uAnfu(L,),
(i) forallL,,L, Anfu(L,nL;)<Anfy(L;)Anfy(L,).

Proof. The condition for £ in I.emma 4.8 is the same as the second condition in
Lemma 4.9.

Lemma 4.11. For all L1, L, Anfn(Ll ULz)E Anfu(Ll)U Anfg(Lz) holds lﬁ Q has
the following property :
IfAuUBeRthen AcQ orBe?l.

Proof. It is assumed that £ has the given property. x € Anfu(L,UL,) iff x\L,u
x\L,e L. Then x\L,€ & or x\L,€ £ and therefore x € Anfu(L;)u Anfu(L>).

To show the converse let AuBeQ. Then &€ Anfy(AuB)<s Anfy(A)u
Anfu(B). Therefore A € £ or B € £ must hold.

Lemma 4.12. For all L], Lz Aan(Ll r‘\Lz) 2 Aﬂfsg(Ll) N Aﬂfg(Lz) holds lff L has
the following property:
IfAec and Be, then AnBeX.

Proof. First, it is assumed, that ¥ has the given property. If xe
Anfy(L,)n Anfy(L,), then x\L,e¥ and x\L,e&, therefore (x\Li)n(x\L;)=
x\(LinLz)e R and thus x € Anfu(L; nLy).

Conversely, Anfu(L, N L;)2 Anfye(L1)n Anfy(L,) is assumed to hold. Let AR
and B € &. Then ¢ € Anfu(A)n Anfy(B)< Anfe(A N B), and thus AnBe&.

Theorem 4.13. ForallL\,L, Anfuo(L,uL,)= Anfe(L,)u Anfe(L,) holds iff % has
the following two properties

() fAuBeQ, then AcorBe¥l

(ii) f Ac ¥ and A< B, then Be L.

Proof. Lemmata 4.8 and 4.11.

Theorem4.14. ForallL,, L, Anfo(L,nL;)= Anfe(L;)nAnfe(L>) holds iff & has
the following two properties:

(i) IfAcland BeQ,then AnBe®

(ii) If Ac and A< B, then Be .
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Proof. Lemmatia 4.9 and 4.12.

For arbitrary € Anfy need not be idempotent. However, the following theorem
holds:

Theorem 4.15. Anfu(Anfe(L))= Anfo(L) holds for all L iff & has the following
property:

AcRiff Anfe(A)e L.

Proof. First it will be shown, that for arbitrary £, x, L Anfu(x\L)=x\Anfe(L)
holds.

Let w e Anfe(x\L). This is equivalent to w\(x\L)=(xw)\L €& and this yields
xw € Anfy(L). But this is equivalent to w € x\Anfe(L).

L is assumed to have the given property. x € Anfu(Anfu(L)) means x\Anfu(L)e
£, which is equivalent to Anfy(x\L)e R as shown above. Therefore x\L €, i.e.
x € Anfo(L).

Conversely it is assumed that Anfe(Anfu(L))= Anfe(L) is always true. Ae¥
holds iff € € Anfu(A)= Anfe(Anfy(A)). This is equivalent to Anfe(A)e L.

The idempotency law for Anf (of Chapter 2) therefore follows dirccily from
Theorem 2.2.

The following theorem can be regarded as a generalization of Theorem 2.11.

Theorem 4.16. Q is assumed to have the following properties:
Gy 0eg,
(i) IfAcQ and B#0, then ABe and BAe ¥,
(iii) If ABeQ and B€X, then A€ X,
Gv) fFAuBeQ, then AcR or Be L,
(v) IfAcR and A< B, then Be &.
Then forall L,, L,, L, #0

Init(L,)u L, Anfe(Ly) ifL2€&,

Anfg(L,L>) ={
Anfg(Ll) lszﬂ L.
Proof. The cases L, and L, ¢ R are distinguished.
(@) L,eX. Let we Anfy(L,L;). Then

w\(LiL2)=(wW\L\)Lou U (v\L;)eR.

w=uy
uGLl

If w e Init(L,), then w € Init(L,)u L, Anfe(L,). If wé Init(L,), then w\L, =0. By (i)
Uw=uviuer, (0\L2)#0 and, by (iv), there is a v, such that w = up, ue L, v\L2€ £.
Therefore v € Anf,(L,) and w = uv € L, Anfy(L>).
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Hence Anfy(L,L,)< Init(L,)u L; Anfe(L>).

Conversely, let w e Init(L;)u L, Anfe(L>).

If welnit(L,), then w\L,#@ and, as L,e 2 and (ii) holds, (w\L,)L,c L. As
(w\L1)L> < w\(L,L>), by (v), w\(L1L2)€ & and therefore w € Anfu(L,L>).

If welL, Anfu(L;), then w=uv, ueL,, veAnfy(L,), therefore v\L,c{. As
o\L2< (wv)\(L1L2), by (v). (uv)\(L1L>)e L and so uv = w € Anfuo(L,L,).

Hence Init(Ll)u L, Al’lfn(Lz).C_ Anfn(Lle).

(b) L,£2. Let we Anfy(L,L>). Then

- w\(LiL2)=(W\L1)Lou U (v\L2)eX.

w=upv
uel,

If v\L, € £ would hold, then, by (ii) v(v\L,)e € and, as L, = v(v\L,), by (v) L€ &,
which is excluded. Therefore, by (iv), (w\L,)L,e L. As L,¢ L and (iii) holds,
w\L, €L, and therefore w € Anfyu(L;).

Hence Anfy(L,L,)< Anfy(L,).

Conversely, let we Anfy(L,). Then w\L;eX and, by (ii), (w\L,)L,e&. As
(w\L,)L, = w\(L,L,) and (v) holds, w\(L,L;)€ &, therefore w € Anfe(L,L,).

Hence Anfy(L,)< Anfe(L,L>).

It should be noted, that the family I of all infinite sets has properties (i)~(v).
Therefore the property of Anf, stated in Theorem 2.11, is an immediate
consequence of Theorem 4.16.

The necessity of properties (i), (ii) and (iii) of ¥ in Theorem 4.16 is shown in the
following theorem:

Theorem 4.17. Forall Ly, L), L, #0 let
Init(L,)U L, Anfu(L,) ifL,eR,

Anfe(L,L,)=
Aﬂfu(Ll) iszé Q.

Then R has the following properties:
(i) 0e L,
(i) If Ac and B #0, then BA€ £ and ABe L,
(iii) If ABeQ and B£ 2, then A€ X.

Proof. First ¥#{@} is shown. Assuming the contrary, because of {a}g&,
Anf({a}) = Anfp({eH{a}) = Anfip({e}) would hold. As aeAnfg({e}), but
a ¢ Anfig({a}), & = {0} is not possible.

Would £ contain @ and a L # @, then Anfe(@L)= Init(@) w @Anfe(L) would hold.
As Anfe(AL)= Anfu(@)=Z*, but Init(@) LB Anfe(L)=49, this is impossible.

Hence #¢ L and so (i) holds.

Let Ae® and B#0. Then Anfy(BA)=Init(B)uB Anfe(A). As B#8, €€
Init(B)< Anfg(BA) and therefore e\(BA)=BA L.
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If B e, then AB € { by a similar argument.

If B2 L, then Anfe(AB)= Anfu(A) and therefore ¢ € Anfe(A)< Anfu(AB) and
so ABei.

Hence (ii) holds.

Let AB € and B£ £. Then Anf.(AB)= Anfu(A). As ¢ € Anfu(AB)< Anfy(A),
A € 2. Hence (iii) holds.

For certain sets £, the languages L, for which Anfy(L)# @ holds, can be charac-
terized:

Theoveii 4.18. The following two conditions are equivalent:
(1) If w\AeQ, then A€,
(2) Anfo(L)#@ iff Le L.

Proof. Let (1) be valid. If Anfy(A)#@, then there is a w, such that w\A € 2. By (1),
AcQ. Let conversely by Ae&. Then ¢ € Anfy(A) and therefore Anfyu(A)#0.
Hence (2) holds.

Let (2) be valid and w\A € £. Then w € Anfu(A) and therefore Anfy(A)#0. By
(2)is A € 2 and so (1) holds.

Remark. (1) holds especially if (ii) and (v) of Theorem 4.16 hold.

The following theorem shows, that the family of all regular languages is closed
under Anfy for arbitrary £.

Theorem 4.19. For all 2 the following holds:
If L is regular, then Anfy(L) is regular.

Proof. Let M =(K, X, 8, qo, F) be a finite automaton accepting L and M, =
(K, %, 8,q0, F), where Fi={qeK:{xcX*:8(q,x)e F}e {}.

Then weT(M,) iff &fqo,w)eF,, that means {x:8(8(qo,w), x)eF}=
{x:wxeL}=w\Le& Hence w e Anfu(L).

If L is non regular, then, for suitable £, Anfy(L) can be any arbitrary language.
This is shown in the following theorems.

Theorem 4.20. Let L = 3*. Then for all L, < 3* there is a set L = B(Z*) such that
Anfy(L)= L, if and only if each class in * | 1 consists of a single word.

Proof. Let each class of 3*/ ~ consist of a single woid. Then for x #y there is
always a 2, such that (without loss of generality) xz2eL and yz# L. Therefore
x\L # y\L iff x #y. For given L,, let 8 ={x\_. x € L,}. Then x € Anfo(L) iff x\L € &,
that means x € L,. Hence Anfo(L}=L,.
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Let conversely be assumed that a class of >*/ T contains more than one word,
that means that there are x, y, x #y, but x;-y. Then x\L = y\L and for ali x, for
which x € Anfy(L) holds also y € Anfy(L). Hence there is no £, such that Anfe(L)=
{x}.

Corollary 4.21. Let X ={a}. Then there is a contextsensitive language L = 3*, such
that for all L, < 3* there is a £, such that Anfe(L)=L,.

Proof. Let L ={a’": n=0}. Then L is contextsensitive and for i # jisaa’ ta".
Therefore each class of 2*/ - consists of a single word and Theorem 4.17 can be

applied.

Corollary 4.22. Let |X|=2. Then there is a contextfree language L < Z*, such that
forall L, < X* there is a L, such that Anfe(L)=L,.

Proof. Let L={ww®:weZ*}. Then L is contextfree and the classes of 3*/ T
consist of single words.
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