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Abstract 

Using the method of  combinatorial constructions and their associated generating functions, 
several results on the number of returns of  random walks to the origin as well as on the number 
of times where such a walk reaches its maximum are proved. 
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1. Introduction 

In this paper we present some further results concerning simple random walks 

m 

= Z X k  with S 0 = 0 ,  Sm 
k--I 

where Xk, k = 1,2 . . . .  are independent and identically distributed random variables 
1 with P{Xk = 1} = P{Xk = - 1 }  = ~. 

Our investigations were motivated by some recent work of Katzenbeisser and 
W. Panny (1986, 1992) and Kemp (1987) on the number of visits to the origin of a 
random walk that ends at level 0 or the number of times where such a random walk 
reaches its maximum. (Other references to this kind of problems are e.g. in Aneja 
and Sen (1972) and Gupta and Sen (1977).) In the short note (Kirschenhofer and 
Prodinger, 1994) we sketched an alternative approach to the first problem, where we 
give "finite" formulae for all moments of the corresponding random variables. 

It is the aim of this paper to extend this approach to a larger class of walks and 
different problems. In particular we want to emphasize the methodological point of 
view, i,e. the use of  combinatorial constructions as well as their associated generating 
functions. This approach not only yields explicit formula: in a straightforward and 
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Fig. 1. A simple random walk starting at 0 and ending at level i. 

elegant manner, but also allows to "transfer" the results immediately to asymptotic 
expansions. An excellent reference to these techniques in general is e.g. Flajolet and 
Vitter (1990). 

2. Return statistics 

Consider the simple random walk 

m 

Sm=~-~Xk, O<~m<~N, with S 0 = 0  and SN=i (N=-imod2), 
k=I  

i.e. a simple random walk starting at 0 and ending at level i after N steps (see Fig. 1). 
Let the variable T be the number of visits to the origin (the starting point is not 
counted). 

Let OF/ denote the family of random walks in question with arbitrary length. It is 
our intention to decompose this family combinatorially into substructures of similar or 
easier type obtaining in this way "symbolic equations". 

We assume i ¢ 0 at first, By symmetry, it is sufficient to study the case i > 0. 
Let us first cut each random walk in ~//~, at the last visit to the origin. Then the first 

part is an element of ¢gb, since it ends at level 0, whereas the second part is in the 
set .W~ of random walks that start in the origin, end at level i, but do not visit the 
origin in between; symbolically this reads 

~/'i = "~/'0 X ~ / .  (2.1) 

Now we focus on ~q/}): Let ¢Uo,+ denote the subset of walks in ¢Uo that are strictly 
positive between the first and the last point, and ~/Uo_ the corresponding set with a 
strictly negative sojourn. Noting that between any two consecutive returns to the 0- 
level a walk is either positive (E ~/Uo,+) or negative (C ¢Uo,-), we get that ~/Uo can 
be decomposed as a sequence of elements in #'o,+ U ~ 'o , - ;  symbolically 

¢Ko = (~//o,+ U ¢Ko-)*.  (2.2) 

Altogether we have 

¢Ui = (~0,+ U ~ 0 , - ) *  x JV/. (2.3) 
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Fig. 2. Decomposition of a walk in .1}. 

Eq. (2.3) can be translated immediately into an equation for the corresponding ordinary 
generating functions. If we count the steps by the variable z, the returns by the variable 
u and observe that disjoint unions, cartesian products and stars translate into sums, 
Cauchy products and geometric series, respectively, we get 

1 
= . . N i ( z , u  ). (2.4) 

W~(~,u) 1 - (W0,+(z,u) + (lgo, (z,u~ 

Of course, Wo,+(z,u) = Wo, (z ,u)  since the corresponding situations are symmetric. 
Furthermore, we have 

W0.+(z,u) = u .  W0,+(z, 1), {2..5) 

since we have exactly one return. It is this property that makes the described decom- 
position especially useful. 

W0,+(z, 1) is now the counting function of the positive random walks, and it is well 
known that this is C(z2), where 

C ( z ) - -  1 - x / 1 - 4 z 2  - - Z n l  ( 2 n s 1 2 ) z "  (2.6, 

n~>l 

is one version of the generating function of the Catalan numbers. At this stage we 
have proved 

1 
Wi(z, u) = " Ni(z, u). (2.7) 

1 -- 2 u C ( z  2) 

Since we have assumed i > 0, there is no return to the 0-level, and we have Ni(z ,u )  = 
Ni(z, 1). Furthermore, each walk in A// can be decomposed according to its last points 
on the levels 1 ,2 , . . . , i  (i > 0) into an i-tuple of walks that start at level 0, are strictly 
positive and end at level 1 (see Fig. 2). 

It follows that 

Altogether 

c i ( z  2 ) 

m i ( z  , hi) = zi (1 -- 2 u C ( z  2 ))" 

(2.8) 

(2.9) 
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Inserting (2.6) we get the explicit form 

1 
~(z,u) = ( 2 . 1 0 )  

1 - u + u  l ~ - 4 z  2 2z ,] 

The generating function of  the s-th factorial moments multiplied by the number of  

walks of  length N in "tt/'i is given by 

M{S)(z) = as u=l =s!  (1 -- V/1 -- 4z 2 )s+i 
au ~ Wi(z' u ) 2izi( v/1 -- 4z2)*+1 

(2.11) 

The number of  walks o f  length N in ~U~ is well known and easy to obtain by the obser- 
vation that a walk in ~//~i must have ½(N + i) upward steps (and ½(N - i) downward 
steps), so that the result is 

1 N ( $ ( N + i ) ) "  (2.12) 

Combining the last formulae we find for the factorial moments  m}*)(N) 

( ) S'[zN+i] (1-V/1-4z2)s+i  U mlS)(X) = [zU]M(iS)(z) = ½(N+i)  ( ~ -  7 ~22 ~ , (2.13) 

where we denote by [zN]F(z) the coefficient o f  Z N in F(z). Applying the binomial 
theorem the last quantity equals 

__-- ~[zNS. +i] Z s + i ( - -1)J (x /1  - -  4Z2) j-s-1. (2.14) 
j=0 J 

Using the binomial series we finally get 

(2.15) 

In order to get an asymptotic result we substitute z 2 = x in M{S)(z) and obtain 

z i M y ) ( z )  = s! (1 - ~ ) * + ~  
2 i ( ~ l - - - - 4 x ~ - ~  " (2.16) 

a reads The local expansion of  this fimction close to its singularity x = 

,,{ , 1 + ( s + ; )  , zim(iS)(z) 
~7 (1 - 4x) (~+1)/2 i)(1 - 4x) s/2 2 (1 - 4x)( s-l)/2 

+ ° ((1 _ 4x~)(s-2v2) } • (2.17) 



P. Kirschenhofer, H. Prodinger/Journal of Statistical Planning and Inference 54 (1996) 67 74 71 

Applying a transfer lemma (see Flajolet  and Odlyzko (1990))  to the right-hand-side 

we.. find 

-- ~--1 { ( T )  [xn]ziM},)(z ) s!4 n n ~ s + i F ,+1 
2i ~ 1 n 1/2 F (~) 

q- ~-nn S--1 (~45 Jr- (s~i ] /+~ 0(n_3/2) } .  (2.18) 

N+i gives an asymptotic formula for Observe that the last expression with n - 2 

[z"]~{')(~). 

The asymptotics o f  reads with the same substitution n - ~ -  

(½(NLi))  = ( 2 n 2 i ) _  _1 4" (1 1 (~+ ( ; ) ) + O ( ~ 2 )  ) 

(2.19) 
Dividing the two expansions we get the final asymptotic result 

m l S ) ( N ) _  s! n ~/2 ( 
V/~ F s+l k l ( T )  

s+iV(s@) 
,1,: r 

+(;))+o 
(2.20) 

for n = N f__A ~ oc, i, s fixed. 

In the sequel we analyze the number o f  visits to the origin f o r  an arbitrary random 

walk starting at O, i.e. we consider the set 

~ =  U ~///'i. (2.21) 
iCd 

The corresponding bivariate generating function is 

W(z ,u )  = Wo(z,u) + 2 Z Wi(z,u) --- 1 1 + 2 z  
i>1 1 -- u + u 1-x/]-~-4z ~ 1 -Vq-Z-4~ ~' (2.22) 

whence we see 

M{S)(z) = s! 
(1 - v/1 - 4z2) s 1 + 2z 

(~/1 - 4z2) s+l ,/1 - 4z z 

for the sth factorial moments mult ipl ied by  the numbers o f  paths. 

Now the even and odd powers of  z are easily distinguished, 

[z2°lM(,)(z) = r x , w ( l _ -  , / 1 2 4 x ) '  1 2,+,]M{,)(z) ' 
J ' ( , f i _ - - 4 ~ ) , + 2  = ~ [ z  

(2.23) 

(2.24) 
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Fig. 3. A nonpositive random walk with four returns to the origin. 
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Fig. 4. The corresponding walk with four points at maximum height. 

and the machinery from above works perfectly. Since, in order to obtain the moments, 
these numbers have to be divided by 2 -2" and 2 -2n-1, respectively, we see the coin- 
cidence between an even number and the consecutive odd one. So we find s(;) 

m(S~(n) = s! Z ( -11  s- j  . (2.25) 
/=o L~J 

3. Maximum statistics 

In this section we analyze a third problem with the generating functions approach, 
namely the number of  times where a simple random walk reaches its maximum. This 
was recently studied in Katzenbeisser and Panny (1992) by different methods. 

We start from the observation that each random walk leading from (0, 0) to (2n, 0) 
can be generated in the following way. We take any non-positive random walk from 
(0,0) to (2n,0) (see Fig. 3), cut the first sojourn at any point different from its right 
end and glue together the cut off part with the end. The maxima of the produced 
random walk at time > 0  correspond obviously to the returns (at time > 0 )  to the 
x-axis of  the original non-positive walk (see also Figs. 4 and 5). 

We observe that there are 

"marked" negative pathes between the origin and a first return point at time 21. The 
corresponding generating function is 

2z2u 
1 _x/q__L~, (3.2) 
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Fig. 5. Another walk that reaches its maximum four times and is equivalent to the walk in Fie. 3. 

i f  the variable z counts the steps in the path and u counts  again the number  of  returns. 

According to our combinator ia l  const ruct ion we have to mul t ip ly  this term by the 

generat ing funct ion o f  the set (~F0 . - )* ,  i.e. by  

1 1 

1 - W o _ ( z , u )  1 - uC(z2)  ' 

to get the generat ing funct ion 

2z2u 1 
1 + ( 3 . 3 )  

~/1 - 4z 2 1 - uC(z2)" 

(The 1 counts  the "empty"  path of  length 0.) 

Therefore the corresponding generat ing funct ion M(~)(z)  reads 

s ! ( t  - 1 - x / ~ Z 4 ~ )  2s+~ (s - 1)!(1 - ~ ) 2 s  , s!(1 - ~ ) 2 . , .  

4sz 2s ~/1 -- 4z 2 4 ' -  l z2s-2 \ / 1  - -  4z 2 22s - 1z2s k/] - 4z 2 

(3.4) 

F rom (3.4) the momen t s  are found to be 

., 2. (,;) (.,_,) /( ) 
m(')(n)  -- 22s-1 Z (-- 1)2"-J ~ n + s  ( - 4 ) " + s  2nn 

j=o 

=2s'4"~ (2;)(-I~ ( n+~ \ n + s  ) / ( 2 n ) .  ( 3 5 ,  
j=0 

We  note that the corresponding m a x u n u m  prob lem for non-nega t ive  paths is consid-  

erably harder, and was studied in K e m p  (1990).  
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