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Abstract. There is a simple algorithm to replace (x,,..., x,) by (X, -5 Xpm)s

. . . pQ3) p{n)
where n=(p(1),..., p(n)) is a permutation of {1, 2,..., n}, essentially without further
storage requirements. This paper continues some research work by D. E. Knuth about a
characteristic parameter of this algorithm. Using generating function techniques alternati-
ve derivations for several results of Knuth as well as a number of new theorems are

obtained.

1. Introduction

> p(n)
and let us consider the following part of a program:

1 ,..., )
Let n=<p(l) " )be a permutation of the numbers 1,2,...,n

- forj:=1tondo
begin k:=p (j);
while k>j do (1.1)
k:=p (k)
end;

These instructions can be used to check whether j is a cycle leader, i. e.
the smallest number in its cycle. For this, one has to ask ,,k=j?* after
passing the while-loop.

The detection of the cycle leader is useful if one wants to permute an
array x[1],..., x[n] along the permutation r essentially without further
storage requirements (in situ permutation). For each cycle (i,,...,i)
the elements x[i,],...,x[i,] should be replaced by x[p(,)],...,
x [p (i,)]. If we do that iff i, is the cycle leader, this will be done exactly
once for each cycle. The complete algorithm was developed by Mac
Leod [5] and analyzed by Knuth [4]:

Mathematic subject classification (1980): 05 A 15, 68 E 05.
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One of the three interesting parameters of this analysis is denoted by
a(n) and equals the number of times the instruction ,,k:=p (k) is
executed. Knuth [4] has shown that

0<a (n)s(;); (1.2)

the average of a (n) is
(n+1)H,—2n; (1.3)

the variance of a(m) is
2P —(n+1PHP—~(n+1)H,+4n (1.4)
(where HY =X, _, <, k™* denotes the n-th harmonic number of degree s,

HY=H).

In this paper we exploit a method which allows us to get these
quantities by less computation. Furthermore, we are able to determine
the s-th factorial moment of a (x) asymptotically, viz.

n*log'n+(y—2)sn*log* ' n+ 0 (nlog*~2n), n—oo (1.5)
where y=.57721 ... is Euler’s constant.

Since the s-th moment is just a linear combination of the j-th factorial
moments for j<s, we obtain the same asymptotic expansion for the s-th

moment.

To stress the method of our treatment in a few words, we introduce
certain generating functions G, (z), obtain a recursion for them, which
does not allow getting a simple explicit expression for G,(z); from this
recursion we obtain differential equations for the generating functions
of the s-th factorial moments, from which we can derive the above
asymptotic expansion.

2. Generating functions

Assume that m=gq (n) is the canonical representation of the permuta-
tion ©t as a product of cycles in the way described in Knuth 3, p. 176].
In the following we always represent a permutation in this way; it is
known that

a(r)=card {(i,j): 1 <i<j<n, q(i)<q (k) for all k with i<k<j}. (2.1)
By a,, we denote the number of permutations n of n elements such that
a(n)=k and by

Ga(2)= Y. auz*/n!

k>0

the corresponding probability generating function.
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THEOREM 1. For n>1
n—1
G,(z)=n""Y G, (2)G,_,_, (2);
k=0

G, (z)=1.

Proof. In the following we write a permutation nt of {1,...,n} in the
form n=plo, where p is a permutation of n—1—k elements and c a
permutation of k elements. It is immediate that

a(n)=a(p)+a(oc)+k.
Summing up over all permutations © with a (t)=s we obtain
n—1 n—1
p= ). < k ) )y A1 —k,i %, j-
k=0 i+j+k=s

Dividing by n! and multiplying by z° it follows that

n—-1
apZml=n"1-Y 2 Y  a ;2a, 54 Z/(k!(n—1=k)!).

k=0 i+j+k=s

Summing up over s =0, Theorem 1 results immediately.
Let us now consider the double generating function H (z, u) defined

by

H(z,u)= ) G,(z)u". (2.3)
- nz0
0
COROLLARY 1. Ew H (z,u)=H (z,u)  H (2, zu);
u

H(l,u)=(1-u)"".

Proof. We multiply the recursion in Theorem 1 by nu"~! and sum up
over all n>0 to get the result. Since G, (1)=1, the identity for H (1, u)
follows.

In the following we consider the s-th factorial moments B, (n) of the
random variable given by the probability generating function G, (2):

ds
B, (n)= = G,(2) . (2.4)

z=1

Introducing the generating functions f, (u) of the s-th factorial moments
by
fiw)=3Y B, (mu", 2.5)

" n20

we obtain by Taylor’s formula and (2.4)

H(z,u)= Y f,(u)(z—1)/s!. (2.6)

820
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THEOREM 2. For s>1
fi@)=2(1—u)™"! f,(u)=h, (u), with

s—1

nw=3 (w3 (e wra-0m 5 (e,

i=1 r=1
where f (u) denotes the i-th derivative of the function f(u);

fo)=(1—-u)"t, hy(u)=—(1—-u)"? and £,(0)=0 for s>1.
Proof. First note that

fi@w)= % [P () (z— 1) u/k!

k>0
by Taylor’s formula. Insertmg (2.6) into the equation of Corollary 1 we
get

-Z/:(u)(z-l)’/s!=[2 £iw) (z- 1)‘/:'!]-[2 1, (zu) z— 1)1'/}!]=

s20 i20 j =0
=[Z fi(u) (z— 1)"/1'1]-[ Y (z— 1! ( T % ) (z— 1) u"/k!)l:
i20 j=0 k>0 .

=Y T )P @) - )"/ kD).

m30 i+j+k=m
Comparing the coefficients of (z— 1)*/s! we obtain

fowy= Y stulf ) £ (w)/(ilk!)

i+j+tk=s

5 (Y3 (e o
i=0 \} r=0 \ T
—2(1=w) )+ ¥ <s.)f.-(u) Y (s“i) O )+
i=1 vl r=0 r
F-w Y (f)u (),

r=1
because B, (n)=1 for all n and therefore f, (u)=(1—-u)"'.
Since G, (z)=1 we have B, (0)=0 for s>1 and therefore £, (0)=0
for s>1, and the proof of Theorem 2 is complete.
Solving the first order linear differential equation of Theorem 2 we
obtain '
COROLLARY 2. For s>1 )

fw)=(1—-u)™? J hy (£) (1— ) dt,
0
where f, and h, are as in Theorem 2.
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3. The first and second order factorial moments

In principle Corollary 2 allows to compute f, (1) (and thus B, (n))
step by step for any s. To illustrate, we determine the first two
moments.

THEOREM 3. With L (u):= —log (1 —u) we have

frw=L @) (-w2= -0+ 1-u),

frwy=2L% ) (1-u)"3=2L (u)-(1-u)"34+2(1-u)"3-
— L () (1-u)2=2(1-u)"%;

By (n)=(m+1)H,—2n,

B, (n)=(n+1Y (H,—HP)— (4n+2) (n+1)H,+6n(n+1).

Proof. Observing h, (u)=u(1—u)~2 the formula for f; (u) 1s imme-
diate; a short computation yields

h, (W)=2L%(u)(1—u)"*+2L (u)(1—u)"*—2L (u)(1-u)™?
from which f, (u) follows by the formula indicated in Corollary 2.

Expanding f; (u) resp: f, (1) we use the following results (compare
Greene/Knuth [2, p. 14]):

T L@y(-wmi= ) (H..+m—Hm)<n-;m>u",

n20

L) (1-u) "' = Y (Hyem— Hn) = (H — HY)) (n;m) v

nz0

The following special instances are needed for our computations:

L) (1-w?=Y[m+1)H,—n]u",

nz0
@) (1-u)2=Y [(n+1)(H2— H®)—2nH,+2n] ",
n>0

L)y (Q-u3=} [<n+2> H,— (3/4)n*~(5/4) n] u",

" n20 2

L2w)-(1-u)3= } [<n+2) (Hr—HP)— (n/2)(5+3n) H, +

n20 2’

+(7/4)n* +(9/4) n] u".

Inserting into the formulas for f; (u) and f, (u) and simplifying we get
the announced results for B, (n) and B, (n).
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4. Asymptotic results

Although, in principle, Corollary 2 allows to determine f, (u) expli-
citly for any s, terms get more and more complicated as s gets large. So
we confine ourselves for general s to give the two leading terms of the
asymptotic expansion of f, («) about the singularity u=1. It turns out to
be a crucial point in the derivation of the desired result that f, () is a
linear combination of functions of the type L'(u)-(1—u)™/~! (with L
from Theorem 3): '

In the following we denote by #, (1) an unspecified linear combi-
nation of terms of the form L’ (u) (1 —u) i=1 where i, j are integers with
either j<q and i arbitrary, or j=q and i<p. With this notation we have

THEOREM 4. For s>0
fiw)=s'L*(u) (1-u)"*"t+ R, _  (u).
Proof. We proceed by induction and start with s=0:
fo (w)=(1—u)"*, and the theorem is valid in this case.

Assuming that the theorem is correct for all j with 0<j<s—1, we
prove that the same holds for s. We will frequently use the fact that for

g)y=cq'L? (u) (1—u) "'+ R,_y , () (c a constant)
the derivatives g@ (u) fulfill
gOW)y=c(@+iNLP(u) (1-u) """ +R,_, ;W)
Especially we have for j<s—1
Y=+ ML (u) (1—w) 7 7 Ry i ().
Inserting into the formula for h, (4) in Theorem 2 we get

s—1

h ()= ()[uL‘(u) (l—u) 1+ Ry, ()] z (s") x

i=1
Cox[s—=)IL T (W) (1—u) "ot + R W]+

s

s

+(1-u) Y ( ) u s (u) (1—uw)"* "'+ R, _,_,  (W)]
r=1 \I

It follows by a short consideration that all remainder terms ®, , («) as

well as the second sum give a contribution of the form ®,_, .., (u). The

other terms contribute
s—1
SILS(u)-(1—u)™s"2- Z (14+u/L (w) ‘=s!(s—1)L° (u)'(l—u)"'2+
i=1 .
+gs—1,s+l (u)’

hence h, (u) is of the same type.

.
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Using Corollary 2 we get

u

f,(u):(l—u)'z-f sls=1D L (1) (1—t)~Sdt+(1—u)~2-

0

J Rs_1,5-1(t)dt=
0

=sILu) (1-uw)* "'+ R,_, ,(u)
by integration by parts.

It should be remarked that from Theorem 4 the leading term of
B, (n) for n— oo is

B, (n)~n*-log’n, 4.1)

either by observing that L°(u) varies slowly at infinity and applying
Hardy-Littlewood-Karamata’s Tauberian Theorem (e.g. [1]) or by the
explicit knowledge of the coefficients of functions of the following type

(compare Zave [6]):
+
L7 @) (1-u)™*" = Y+ P, (HY ,—HY),. _.,H;v,z,,_H;w)-(” ") u?,
n>0 q
4.2)
where-P, (s, ..., s,) is defined by P,=1 and
Pp(sl, < '3sp)=(— I)P Yp(_sla —S2, '—2539 ey _-(p- 1)!5}7)

with Y, the p-th Bell polynomial.

With the information on the structure of the remainder term in
Theorem 4 it is possible to determine the second term in the expansion
of £, (u) about u=1 explicitly:

THEOREM 5. For s=0
fi@)=s1Lsu)- (1—u) " +sls (H—2) L7 (u)- (1—u) > 71+ R, _, , (u).

Proof. From Theorem 4 we know that f; (u) is of the form
fi)=i'L'(u) (1—u) " +a il L (u) (1—u) "+ R, (u)
with some constant a;. Observing that

Si@)=G+ 1L @) (=)~ "2+ (40, G+ D)L @) (1-u)™ 2+
+Rios,ieq (W),

SO@=G+NL @A —u) T Ry @) (22)
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and inserting these formulas in the definition of h, (u) (Theorem 2) we
obtain

hs(u)=si (j)[i!L" @1 —u) " ail L ) 1 —u) "+ By, ()] X

i=1
x[s=)L @) (1—u) " g, (s—DIL T 7 W) (1—u) ™+ 4
+(s—i) (5= DL @) (1—u) T By o )]+

+(1—u)—1 i (:)[S!Ls—r(u) (l_u)—s—1+gs—r—l,s+l (u)]=

r=1

=ss— 1) L*(u) (1 —u) s 2 +5IL5" ! (u) (1 —u) """ 2 x

s—1
X[s+ Z (ai+as~i+s_i):]+gs—-2,s+l (u)

On the other hand we have
fo@)=2(1—w)  fi@)=(+DIL () (1-u) ™72 +
+(s+a,(s+1)sILs P w)(1—u)"*"2— -
=2sIL5(u)(1 —u) > "2 =2a, s () (1 —u) ™52+ By g0y (U)=
=sl(s— 1) L) (1—u)"* "2+ (s+a,(s—1))s! L (w)(1 —u) s~ 2+
+ Ry 41 (W)

Comparing the coefficients of s!L*~! (1 —u)~*~% we obtain the recur-
rence relation

s s—1
(s—l)as=< )+2- Y a;.
2 i=1
Subtracting this equation from
s+1 s
Sas+1=( )+2‘Zai
2 i=1
we derive

sa ., =(—1)a,+2a +s,

or
a,.,/(s+1)=a/s+1/(s+1), a,=-1.

Summing up we get
s—1
afs=—1+) (i+1)"'=H_ -2,

i=1
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hence
a,=s(H,—2)

and the proof is compiete.
Combining Theorem 5 with formula (4.2) we reach our final result

THEOREM 6. For s3>0
B, (n)=n’"log’n+s(y—2)n*-log* ' n+ 0 (n*-log* "2 n),
where y=.57721 ... denotes Euler’s constant.

Proof. From Theorem 5 and (4.2)
n+s
b=t 120, O, ..., ) (")
s
n+s
+5 (H‘—2)s!Ps,_1 (Hfll-&)-s_Hil)’ e, Hsls:sl)_Hgs—l))< s >+

+ 0 (n*-log* "2 n),
since
P, (H®) —H®Y, .. 3 HP —HP)=0 (n*- H?)= 0 (n*-log’ n).
Regarding

p -
- P,,(sl,...,sp)=s{’—(2)s{’ 504 ...

we have
B, (n)=<n:8> [s'(H,ss— Hy+s!s(H,—2) (H,.s— H) ']+

+0 (n*-log* > n)=n’[H;, ,— sH3;  Hy+s (H,~2) H33 1]+
+0 (n*-log*~ 2 n)=n’[(log (n+5)+v)° — 2s (log (n+s)+y) ']+
+ 0 (n*-log* ?n)=n*[log*n+s(y—2)log* ' n]+ O (n*-log* *n).
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PRILOG ANALIZI (IN SITU) PERMUTACIJA

P. Kirschenhofer, H. Prodinger i R. F. Tichy, Be¢, Austrija

Sadrzaj

Postoji jednostavni algoritam koji zamjenjuje (prevodi) (x,,..., x,)
58 (X, 1) - -5 Xpm) Bdje je T=(p(1),..., p(n)) permutacija od 1,2,.. ., n,
koji u biti ne zahtijeva dodatno koristenje memorije.

U ovom redu se nastavljaju istrazivanja D. E. Knutha o jednom
karakteristi¢nom parametru tog algoritma. KoriStenjem tehnika funkci-
ja izvodnica dobiveno je osim alternativnih izvoda nekoliko rezultata
Knutha i nekoliko novih rezultata.
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