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A CONTRIBUTION TO THE ANALYSIS OF IN SITU
PERMUTATION

P. Kirschenhofer, H. Prodinger and R. F. Tichy, Vienna, Austria

Abstract . There is a simple algorithm to replace (x,, . . ., x„) by (x 1), . . ., x,, A l),
where n= (p (1), . . . , p (n)) is a permutation of {1, 2,...,n), essentially wthout further
storage requirements . This paper continues some research work by D . E. Knuth about a
characteristic parameter of this algorithm . Using generating function techniques alternati-
ve derivations for several results of Knuth as well as a number of new theorems are
obtained .

1. Introduction

Let n=
G

1 '

	

n be a permutation of the numbers 1, 2, . . ., n
(1), . . .,p(n)

and let us consider the following part of a program :

for j : =1 ton do

begin k :=p(j) ;

while k > j do

	

(1 .1)

k : =p (k)

end;

These instructions can be used to check whether j is a cycle leader, i . e .
the smallest number in its cycle . For this, one has to ask „k=j?" after
passing the while-loop .

The detection of the cycle leader is useful if one wants to permute an
array x[1],..., x[n] along the permutation n essentially without further
storage requirements (in situ permutation) . For each cycle(',, . . . , ik )

the elements x [i1 ], . . . , x [ik] should be replaced by x [p (i1 )], . . . ,
x [p (i k)] . If we do that iff i t is the cycle leader, this will be done exactly
once for each cycle. The complete algorithm was developed by Mac
Leod [5] and analyzed by Knuth [4]
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One of the three interesting parameters of this analysis is denoted by
a (n) and equals the number of times the instruction „k : = p (k)" is
executed. Knuth [4] has shown that

(where H;;)=~1Sk4n k- ' denotes the n-th harmonic number of degree s,
H(') = Hn) .

In this paper we exploit a method which allows us to get these
quantities by less computation . Furthermore, we are able to determine
the s-th factorial moment of a (n) asymptotically, viz .

n'log'n+(y-2)sn'log' - ' n+0(n'log'-2 n), n-•oo

	

(1.5)
where y= .57721 . . . is Euler's constant .

Since the s-th moment is just a linear combination of the j-th factorial
moments for j < s, we obtain the same asymptotic expansion for the s-th
moment.

To stress the method of our treatment in a few words, we introduce
certain generating functions Gn (z), obtain a recursion for them, which
does not allow getting a simple explicit expression for G,, (z) ; from this
recursion we obtain differential equations for the generating functions
of the s-th factorial moments, from which we can derive the above
asymptotic expansion .

2. Generating functions

Assume that n = q (n) is the canonical representation of the permuta-
tion n as a product of cycles in the way described in Knuth [3, p . 176] .
In the following we always represent a permutation in this way ; it is
known that

a (7c)=card {(i,j) : 1<i<j<n, q(i)<q(k) for all k with i<k<j} . (2 .1)

By a nk we denote the number of permutations n of n elements such that
a (n) = k and by

Gn (z)= E ank zk/nk
k30

the corresponding probability generating function .

0<a(n)< n2 ; (1 .2)

the average of a (n) is

(n+ 1) Hn-2n ; (1 .3)
the variance of a (n) is

(1 .4)2n2 - (n+ 1) 2 H(,2) - (n+ 1) H, +4n
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THEOREM 1 . For n > 1
n-1

Gn (z)= n -1 -

	

zk Gk (z) Gn-1-k (z) ;
k=0

G0 (z) =1 .

Proof. In the following we write a permutation it o f { I,,, n } in the
form 7t= pl a, where p is a permutation of n-1- k elements and a a
permutation of k elements . It is immediate that

a (it)=a (p)+a (a) + k.

Summing up over all permutations n with a (it)=s we obtain

n-1 n-1

a, = 2

	

k

	

E an-l-k,i ak,j •
k=0

	

i+j+k=s

Dividing by n! and multiplying by z8 it follows that
n-1

a n, zs/n!=n-1' Z zk

	

ak,jz,'an-l-k,iz/(k!(n-1-k)!),
k=0

	

i+j+k=s

Summing up over s>0, Theorem 1 results immediately .
Let us now consider the double generating function H z, u defined

by
H (z, u) = E G n (z) u" .

	

(2.3)
R ;?-O

a
COROLLARY 1 .

au
H (z, u) = H (z, u) • H (z, zu) ;

H (1, u) = (1- u) -1 .

Proof. We multiply the recursion in Theorem 1 by null -1 and sum up
over all n >0 to get the result . Since G" (1)=1, the identity for H (1, u)
follows .

In the following we consider the s-th factorial moments Rs (n) of the
random variable given by the probability generating function G" (z) :

8

~ s (n)=- Gn (z)

	

(2.4)
de

	

z=1

Introducing the generating functions f8 (u) of the s-th factorial moments
by

fs (u)

	

(n) u",

	

(2.5)

n ;00

we obtain by Taylor's formula and (2.4)

H (z, u)= > f8 (u) (z-1)'/s! .

	

(2.6)
8>0
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THEOREM 2 . For s > 1

f, (u) - 2 (1- u)-' f, (u)=h, (u), with
s-I (sf

	

s -i S-i

	

s s
hs(u)= ~,

	

(u) C'

	

Urf~r)r-i(u)+(1-U)-1 L.i

	

Urfs)r(u),
i=1 i

	

r[=,,o

	

r

	

r=1 r

where f ° (u) denotes the i-th derivative of the function f (u) ;

fo(u)=(1-u)-', ho(u)=-(1-u)-2 and f, (0)=0 for s>1 .

Proof. First note that

fj (zu)= fk) (u) (z-1)k u'/k!
k ;00

by Taylor's formula . Inserting (2 .6) into the equation of Corollary 1 we

get

-E,fs(u)(z-1)3/s!= Ef(u)(z-1)i/i! . ~, fj(zu)(z-1Y/j! _
S>0

	

i>0

	

j)o

_

	

f (U) (z-

	

E (Z- 1)'/j! E f k) (U) (Z- 1)k uk/k! _
i30

	

j30

	

k30

Z

	

ukf (u)fk) (u) (z- 1)m/(i!j!k!)'
m30 i+j+k=m

Comparing the coefficients of (z-1r/s! we obtain

f (u) = E s! •ukf (u)f k) (u)l(i!j!k!)
i+j+k=s
s S

	

s-i S-1
=

	

()fi (U) E

	

)u1i1
;j_r(u)~ i=o 1

	

r=o

	

r

= E

s-1 S

	

s-i S- i
=2 (1-u)-l u)-'f, (u) +

i=i i f (u) ,=o r
S s

+(1-U)-1'

	

)1lr
.fs~r(U),

r=1 r

urf Ir) i - r (u)+-

because (30 (n)=1 for all n and therefore f0 (u) = (1- u)-1 .
Since Go (z)=1 we have (3, (0)=0 for s > 1 and therefore f, (0)=0

for s > 1, and the proof of Theorem 2 is complete .
Solving the first order linear differential equation of Theorem 2 we

obtain
COROLLARY 2 . For s > 1

lu
f (u)= (1- u)-2

	

h, (t) (1- t)2 dt,
0

where f, and h, are as in Theorem 2 .
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3. The first and second order factorial moments

In principle Corollary 2 allows to compute fs (u) (and thus 08 (n))
step by step for any s . To illustrate, we determine the first two
moments .

THEOREM 3 . With L (u) : = - log (1- u) we have

f1 (u)=L (u)-(1-u)-2-(1-u)-2+(I-u)-1,

f2 (u) 2L' (u) .(1-u)-3-2L (u) .(1-U)-3+2 (1-u) -3 -

-L2 (u) •(1-u)-2-2(1-u)-2 ;

01 (n)=(n+l)Hn-2n,

02 (n) = (n+ 1) 2 (Hn - H(21 ) - (4n + 2) (n + 1) Hn + 6n (n ± 1) .

Proof. Observing h 1 (u)=u(1-u)-3 the formula for f1 (u) is imme-
diate ; a short computation yields

h2 (u)=2L2 (u) (1-u) -4 +2L (u) (1-u) -4 -2L (u) (I -u) -3

from which f2 (u) follows by the formula indicated in Corollary 2.

Expanding f, (u) resp, f2 (u) we use the following results (compare
Greene/Knuth [2, p . 14]) :

n+m
L (u) - (I - u )-m-1 =

	

(Hn+m- Hm)

	

un ,
n ;0

	

m

L2(u) .(I-U)-m-1=

	

((Hn+m-Hm)2-(H n2+m-H(n2))) n+m tl" .
n ;0o

	

m

The following special instances are needed for our computations :

L(u)-(1-u)-2= E [(n+l)Hn-n]u",
n~-0

L2(u) •(1-u)-2=

	

[(n+1)(Hn-H;,2>)-2nHn+2n]u",
N ;0-0

L (u) - (1 _ U)-3 = 1:
1(

n+2 2 H
n- (3/4) n2 - (5/4) n u",

n 20

L2(u)-(1-u)-3= 1: n22 ()H_H 2 _fl/2s+3flH±2 ;,>)() ()n
I,

+ (7/4) n 2 + (9/4) n u" .

Inserting into the formulas for f1 (u) and f2 (u) and simplifying we get
the announced results for 0, (n) and P2 (n) .
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4. Asymptotic results

Although, in principle, Corollary 2 allows to determine f, (u) expli-
citly for any s, terms get more and more complicated as s gets large . So
we confine ourselves for general s to give the two leading terms of the
asymptotic expansion off, (u) about the singularity u = 1 . It turns out to
be a crucial point in the derivation of the desired result that f, (u) is a
linear combination of functions of the type L' (u)- (1-u) -i -1 (with L
from Theorem 3) :

In the following we denote by 9tp , q (u) an unspecified linear combi-
nation of terms of the form L' (u) (1- u) - j -1 where i, j are integers with
either j < q and i arbitrary, or j = q and i < p . With this notation we have

THEOREM 4 . For s >0
f, (u)=s!Ls (u) • (1- u) -s-1 + 2s (u) .

Proof. We proceed by induction and start with s = 0
fo (u) = (1- u)-1 , and the theorem is valid in this case .

Assuming that the theorem is correct for all j with 0 <j <s-1, we
prove that the same holds for s . We will frequently use the fact that for

g (u)=cq!Lp (u) • (1- U) - q -1 + 9tp - 1,q (u)

	

(c a constant)

the derivatives go ,̀ (u) fulfill

g ( Ò (u)=c (q+ i)!L" (u)' (1 - U)-q-i-l + gtp-l,q+i (u) .

Especially we have for j < s -1

J ji) (u)=V +i)!Li (u) - (1 - u)-j-i-1 + Aj -1 .J+i (U) •

Inserting into the formula for hs (u) in Theorem 2 we get

sh, (u)=~ t [i!L i (u) (1- u) -i-1 + gti-l,i (u)] E`
s- i

)Ur X
=1

	

.-o

	

r
x [(s- i)!Ls-i-. (u) . (1- u) -s+i-1 + r~s-i-r-l,s-i (u)] +

S
A-0-0-1

	

Ur [s!Ls-r (U) . ( 1- u )-s-1 + 9t, _1,3 (u)]
r=1

It follows by a short consideration that all remainder terms 9tp,q (u) as
well as the second sum give a contribution of the form (u) . The
other terms contribute

s-1
s!Ls (u) • (1- U)-,-2 .

	

(1 +u/L (u))s-i =s ! (s - 1) Ls (u) • (1- u) -s-2 +
i=1

+gt3_1,3+1 (u),

hence h, (u) is of the same type .



U

0

A contribution to the analysis . . .

	

275

Using Corollary 2 we get

f
u

fs (u)= (1- u ) -2 •

	

s! (s- 1) Ls (t) • (1- t) - s dt+ (1- u)-2 .

0

9tS- l ' s - I (t)dt=

=s!LS (u)- (1- u)-s-l + yPs-l,s (u)

by integration by parts .

It should be remarked that from Theorem 4 the leading term of
0.,(n) for n--+ oo is

PS (n) - n-- logs n,

	

(4.1)

either by observing that LS (u) varies slowly at infinity and applying
Hardy-Littlewood-Karamata's Tauberian Theorem (e .g. [1]) or by the
explicit knowledge of the coefficients of functions of the following type
(compare Zave [6])

Lp(u) •(1-u)-9-1= ,Pp
(H^l+9-H(1), . . .,H;,p+9-Hgpl) n+q u",

n ;?~o

	

q
(4 .2)

where-Pp (s 1 , . . . , SP ) is defined by P0 =1 and

Pp (S 1 , . . . , S p )= (- 1)p Y p (- s1, - S2 , - 2S3,	p- 1))sp)

with Yp the p-th Bell polynomial .

With the information on the structure of the remainder term in
Theorem 4 it is possible to determine the second term in the expansion
offS (u) about u=1 explicitly :

THEOREM 5 . For s > 0

fs (u)=s!LS (u) • (1- u)-S-l +s!s (H S- 2) LS -1 (u) • (1- u)-s-l
+,qts-2,S (u) .

Proof. From Theorem 4 we know that f,. (u) is of the form

f (u)=i!L'(u) •(1-u)-'-l+ a,i!L' -i (u)-(1-u) -1 +A-2, ; (u)

with some constant a; . Observing that

f j (u)=(i+ 1)!L' (u) (1-u)-'-2+(i+a; (i+ 1))i!L' -1 (u) (1-u) - ' -2 +
+ 9t'-2.'+1 (u),

f;'1(u)=(i+J)!L` (u) (l -u)-'-,
;-1 + 9Pi-l,'+i (u)

	

(1 >2)
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and inserting these formulas in the definition of Vu) (Theorem 2) we
obtain

s- 1 s
h,(u)=

	

[i!L` (u) (1- u)- 1 +aii!L`-1(u) (1- u)-`-1 + gP,-a, t (u)] x

x[(s- i)!Ls-` (u) (1- u)-s+`-1 +a s (s- i)!Ls- ` - 1 (u) (1- u )-s+i-1 +

+ (s- i) (s- i)!Ls_i-1 (u) (1- U
)-s+i-1 +

	

(u)] +
s

+0 - u)-1

	

s [s!Ls- r (u) (1- u)-s-1 + 9g,-r-l,s+ 1 (u)] =
r=1 r

=s!(s-1) Ls (u) (1-
u)-s-2 +s!Ls-1 (u) (1 _ u)-s-2 x

s-x
s[+ 11 (a;+a,-i+s-i) + 98,-2,s+i (u) .

i=1

On the other hand we have

f,'(u)- 2 (1 - u) -1If (u) = (S+ 1)!L s (u) (1- u) -s-2 +

+(s+a,(s+1))s!Ls-1 (u)(1-u)-s-2-

- 2s!LS(u)(1- u) -s-2 - 2ass!LS-1(u)(1- U)-s-2 +-Ws-2,s+1(u)=

=s!(s-1)Ls(u)(1-u)-s-2+(s+a,(s-'1))s!Ls-1 (u) (1-u) -s-2 +

+-qs-2,s+1 (u) .

Comparing the coefficients of s!Ls -1 (1-u) - s -2 we obtain the recur-
rence relation

we derive
sas+1 =(s-1) as +2a,+s,

or
a,+1/(s+l)=a,/s+l/(s+1),

	

a 1 =-1 .

Summing up we get
s-1

as/s= - 1 + (i + l) -' = H, - 2,
i=1

s s-1
(s-1) a,=

	

+2- aia2
i=1

Subtracting this equation from

S+1 s

sas + 1 = -)+2a,2
=1
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a S =s (H S-2)

and the proof is complete .
Combining Theorem 5 with formula (4 .2) we reach our final result

THEOREM 6. For s >0

(3 S (n) = ns' logs n + s (-y- 2) ns •logs- t n + 0 (n'-log,-2 n),

where y = .57721 . . . denotes Euler's constant .

Proof. From Theorem 5 and (4 .2)

(n)=s!P (H ( ' ) .,- H(l), . . ., H(s) -H(s)) n+s +
s

	

s

	

n+sn+s

	

s S

+s(HS-2)s!P _ (H (1) -H( 1 )

	

H(s-1)-H(s-1)) n+s +
s l

	

n+s

	

s , .. , n+s

	

s
S

+ 0 (ns- logs-2 n),

since

Pp (Hn+s - HSI) , . . . , H;,p+s - Hs '°) = 0 (n-- HP) = 0 (ns • log" n) .

Regarding

Pp(s1, . . .,Sp)=si-

(P)
2 Sr_2 S2~- . . .

we have

n+s
RS (n) = s

	

[s! (Hn+s- H s )' +s!s (H S- 2) (Hn + S- HS )s
_1 ]

+

+ 0 (n' . logs-2 n ) = n s [Hs + s - sHn + s Hs + s (H s - 2) Hs + s] +
+0 (n s •logs ` n)=n2 [(log (n+s)+y)s-2s (log (n+s)+y)s_1]+

+ 0 (ns . logs-2 n)= ns [logs n +s (y-2) logs-1 n] + 0 (ns .logs-2 n) .
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PRILOG ANALIZI (IN SITU) PERMUTACIJA

P. Kirschenhofer, H. Prodinger i R. F . Tichy, Bee, Austrija

Sad r2aj

Postoji jednostavni algoritam koji zamjenjuje (prevodi) (x, ' . . . ' x.)
sa (X (1) , . . . , xP W) gdje je n= (p (1), . . . , p (n)) permutacija od 1, 2, . . ., n,
koji u biti ne zahtijeva dodatno kori§tenje me'morije .

U ovom redu se nastavljaju istra2ivanja D . E. Knutha o jednom
karakteristicnom parametru tog algoritma . Korigtenjem tehnika funkci-
ja izvodnica dobiveno je osim alternativnih izvoda nekoliko rezultata
Knutha i nekoliko novih rezultata .
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