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Abstract

Resorting to the recursions satisfied by the polynomials which converge to the right hand
sides of the Rogers-Ramanujan type identities given by Sills [17] and determinant method
presented in [9], we obtain many new one-parameter generalizations of the Rogers-Ramanujan
type identities, such as a generalization of the analytic versions of the first and second
Gollnitz-Gordon partition identities, and generalizations of the first, second, and third Rogers-
Selberg identities.
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1 Introduction

In [7], by evaluating an integral involving ¢-Hermite polynomials in two different ways
and equating the results, Garrett et al. found a generalization of the celebrated Rogers-
Ramanujan identities:
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where the Schur polynomials D,, and FE,, are defined by

Dm:Dm—1+qum—27 D0:17 D1:1+Q7
Em = Lm—1 + qum—27 EO = 17 El = 17



and Schur [15] gave the limit
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It is obvious that we can get the following two Rogers-Ramanujan identities by
letting m = 0 and m = 1 in (1.1), respectively.
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Later, Andrews et al. [3] provided an alternative proof of (1.1) by using the ex-
tended Engel expansion. In [9], Ismail et al. used the theory of associated orthogonal
polynomials to explain determinants that Schur introduced in 1917, and showed that
Equation (1.1) can be obtained from the Rogers-Ramanujan identities (1.2) and (1.3).
Furthermore, Andrews et al. [4] discussed Al-Salam/Ismail and Santos polynomials in
the context of identities of (1.1) type.

The main purpose of this paper is to apply the determinant method which was
presented in [9] to generalize the Rogers-Ramanujan type identities. In [17], Sills mainly
focused on a method which was developed by Andrews [2, §9.2, p. 88| for discovering
finite analogs of Rogers-Ramanujan type identities via ¢-difference equations. In the
paper, he presented at least one finitization for each of the 130 identities in Slater’s
list [18], along with recursions satisfied by the polynomials which converge to the right
hand sides of the Rogers-Ramanujan type identities. Resorting to these recursions
and determinant method, we obtain many new parameterized generalizations of the
Rogers-Ramanujan type identities, such as a generalization of the analytic versions of
the first and second Gollnitz-Gordon partition identities, and generalizations of the
first, second, and third Rogers-Selberg identities. In Section 2, we mainly discuss
the three-term recursions. In Section 3, we focus on four-term recursions. Moreover,
in [6,12], the authors also found some new Rogers-Ramanujan type identities which
are the partners to those in Slater’s list. By using the determinant method, we can
give the initial conditions of the recursions for these new identities, and then find the
generalizations of these identities.

In [17], Sills gave an annotated and cross-referenced version of Slater’s list of iden-
tities from [18] as an appendix. In this paper, we use this version of the list as the
reference.

In order to sketch the paper clearly, we list the main results in the table.



Identities in Slater’s list and some new ones | Generalizations
Identity A.8 (Gauss-Lebesgue [11]) Theorem 2.1
Identity A.13 (Slater [18])

Identity A.16 (Rogers [13]) Theorem 2.2
Identity A.20 (Rogers [13])

Identity A.29 (Slater [18]) Theorem 2.3
Identity A.50 (Slater [18]) (1) (2)
Identity A.34 (Slater [18]): The analytic version of

the second Gollnitz-Gordon partition identity. Theorem 2.4
Identity A.36 (Slater [18]): The analytic version

of the first Gollnitz-Gordon partition identity.

Identity A.38 (Slater [18]) Theorem 2.5
Identity A.39 (Jackson [10]) (1) (2)
Identity A.79 (Rogers [13]) Theorem 2.6
Identity A.96 (Rogers [13]) (1) (2)
Identity A.94 (Rogers [13]) Theorem 2.7
Identity A.99 (Rogers [13]) (1) (2)
Identity A.25 (Slater [18]) Theorem 2.8
An identity (McLaughlin et al. [12, Eq. (2.7)])

Identity A.31 (Rogers [14] and Selberg [16])

The third Rogers-Selberg identity

Identity A.32 (Rogers [13] and Selberg [16]) Theorem 3.1
The second Rogers-Selberg identity (1) (2)
Identity A.33 (Rogers [13] and Selberg [16])

The first Rogers-Selberg identity

Identity A.59 (Rogers [14])

Identity A.60 (Rogers [14]) Theorem 3.2
Identity A.61 (Rogers [13]) (1) (2)
Identity A.80 (Rogers [14])

Identity A.81 (Rogers [14]) Theorem 3.3
Identity A.82 (Rogers [14]) (1) (2)
Identity A.117 (Slater [18])

Identity A.118 (Slater [18]) Theorem 3.4
Identity A.119 (Slater [18]) (1) (2)
Identity A.21 (Slater [18])

An identity (McLaughlin et al. [12, Eq. (2.5)]) Theorem 3.5
An identity (Bowman et al. [6, Thm. 2.7]) (1) (2)
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As usual, we follow the notation and terminology in [8]. For |¢| < 1, the g-shifted
factorial is defined by

[e.e]

(@5 ¢)o
a;q)oo = 1—ag¢®) and (a;q), = —=>2~ forn e C.
(a9) ,g]( ) (a:9) (aq™; @)oo

For convenience, we shall adopt the following notation for multiple g-shifted facto-
rials:

(al, a2, ..., 0m; Q)n = ((11; Q)n(a2; Q)n T (a'm; Q)m

where n is an integer or infinity.

2 Generalizations of identities with three-term re-
cursions

In this section, we generalize the Rogers-Ramanujan type identities in Slater’s list [18]
by using the determinant method presented in [9]. Start with the three-term recursions
of the polynomials which converge to the right hand sides of the identities in [17].
First, we construct a function F'(z) which is expressed by an infinite determinant.
By expanding the determinant and comparing the coefficients, we get a summation
expression of F(z). Then, we expand D,(z), a finite determinant of F(z), to get a
recursion which has appeared in Sills’ list [17, Sec. 3.2]. Assume that P, and @,
satisfy this recursion with different initial conditions, then D, (z) can be expressed by
a linear combination of these two polynomials. By means of the initial conditions of
D, (z), we get the limit of D,,(z) which is another expression of F(z). Finally, equating
the two different expressions of F(z), a new generalization is obtained.

In the following, for convenience, the recursions given by Sills [17] are directly pre-
sented below the identities in Slater’s list.

Theorem 2.1 We have

i G I O ) PO o L 2

(¢ Dn

n=0

J’ (2.1)

where

Qm = (1 + qm_l)Qm—l + qm_lQm—27 Q—l = 17 QO = 07 Ql = 17

Rpy=(1+4¢" " )Ru1+¢" 'Rua, Ra=-1 Ry=1 R =1



Proof. The identities A.8 and A.13 in Slater’s list are stated as follows.
Identity A.8 (Gauss-Lebesgue [11]):
n(n+1)/2

(¢ 0)nq (¢4 dYw
2 (¢:9) () 22)

n=0

Sills [17] gave the following recursion for P, which converge to the right hand side of
(2.2).

Pn:(l—l—qn)Pn_l—l—ann_g, P_1:O, P():l, P1:1+q (23)

Identity A.13 (Slater [18]):

X . n(n—1)/2 4. 4 e A2
Z( 4 4)nq _ 050  ( q,g)oo’ (2.4)
—~ (¢:9) (0o (66w

Pn = (1 + qn_l)Pn_l + qn_lpn_g, P_1 = O, PO == 1, P1 = 2. (25)

First, we need to shift the index n in (2.3) to let the two recursions coincide with
each other. Letting @), = P,_1 in (2.3), we get

Qn=>04¢""Qn1+¢" " Quoa, Qi=1 Q=0 Q=1 (2.6)

Thus, P, in (2.5) and @, in (2.6) satisfy the same recursion with different initial
conditions, and converge to the right hand sides of (2.4) and (2.2), respectively. In the
following, we use P, in (2.5) and @, in (2.6) to prove this theorem.

Then consider the following determinant:
142 zq

-1 1+2z2q 2q
-1 1+2z2¢* 2¢3

2

F(z):=

Expanding the determinant with respect to the first column, we get
F(z) = (1+2)F(2q) + 2qF(2¢%).
Setting N
F(z)= Z anz",
n=0

by comparing coefficients, we have

an = q"an + ¢ ran_1 + ¢ a,,
O ) Y i
=y = = ag.
1—qn (6 On



Since ag = F'(0) = 1, iteration leads to

n(n—1)/2

F(Z) _ Z (_q; (é;nq Zn,

@

n=0

and thus the left hand side of (2.1) can be expressed by F'(¢™).
On the other hand, F'(z) is the limit of the finite determinants
1+ 2 zq

-1 1+2z2q¢ 2¢*
—1 1+ 2 2q°

-1 1+2g"2 zg"!
-1 1+ zg" 1

Expanding this determinant with respect to the last row, we get
Dy(2) = (14 2¢" ") Dy 1(2) + 24" ' Dy a(2), Do(z) =1, Di(z) =1+z.
Then we have
Diom(q™) = (1+¢")Dpon1(q™) + ¢ D2 (q™). (2.7)

According to (2.5), (2.6), and (2.7), we notice that the sequences (D, _,(¢™))n, (Pn)n,
and (Qn), satisfy the same recursion. Set

Dn—m(qm) = )‘mPn + Nan-

We can determine the parameters \,, and p,, using the initial conditions Dy(¢™) = 1,
D1(¢™) =1+ ¢™, and the recursions (2.5) and (2.6), which leads to the evaluations

>\ — Qm—l
" PQO—l - Pm—ICZm7
Pm—l
m,

 PriQm — PrQumot
Indeed, we have

PrQmo1 — Pn1Qm = (—1)mq(?>>
which can be proved by induction on m.

Therefore, we have simpler forms for A, and p,, as follows:

A = (1) ()@, 4, fom = —(=1)"g" )P,y

Notice that the above analysis has led to

m m

Dpem(q™ = (=1)"q () Qs P, — (—1)"q 3 P, 1@,
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Letting n — oo, we have

m

Fg™) = (=1)"¢ 3)Qp1 P — (=1)"¢" (3) P, _1Qu,

which is equivalent to the following identity

3 (—¢:9)ng

— (¢ )n

n(n+2m—1)/2 m (—a 02
= (g () LD
(4 ¢%)oo

(g D p
(45 @)oo

Finally, set R,,—1 = Py—1 — Qum—1. According to (2.5) and (2.6), we have
Rm = (1 + qm_l)Rm—l + qm_lRm—2> R—l = _17 RO = 17 Rl = 1.

Therefore, we obtain (2.1) as desired. |

Notice that letting m = 1 and m = 0 in (2.1), we get the identities (2.2) and (2.4),
respectively.

Theorem 2.2 We have

i qn2+2mn _ Am N Bm | (28)

(@540 (4,05 P)o(—0% ) (6% 6% 0°)oo(—0%; %)

n=0

where
Ay = =" 3 A0 1+ Ao, Ap=1, A =0,

Bm = _q2m_3Bm—1 + Bm—2> BO = 07 Bl =1.

Proof. We state the identities A.16 and A.20 in Slater’s list with the recursions given
by Sills [17] as follows.

Identity A.16 (Rogers [13]):
0 n242n 1
q4 D (02 3 2. 2\ (2.9)
(g qY)n (6% 6% %) (0% 4%)oo
Po=(1—-¢@+¢""YPo_i +¢*P,_s, P.=1 P =1 P =1+¢  (2.10)

Identity A.20 (Rogers [13]):

oe] 2
q" 1
- : 2.11
; (@50 (2046 )oo(—0% %) oo (2.11)

Po=(01-¢+¢" YHPy+ Py, P,=1 Py=1, P=1+q. (2.12)



For the recursion (2.10), letting Q,, = P,_1, we get
Qn=0-+¢""NQn1+¢Qn2 Qui=1-¢" Q=1 Q=1 (213)

Therefore, P, in (2.12) and @, in (2.13) satisfy the same recursion with different
initial conditions and converge to the right hand sides of (2.11) and (2.9), respectively.

Consider the following determinant:

1—¢+2q ¢
—1 1—q2+zq3 q2
F(z):=

—1 1—q2+zq5 q2

Expanding the determinant with respect to the first column, we get
F(z) = (1 - ¢+ 2q)F(2¢°) + ¢*F (2q").
Setting .
F(z) = Z a,z",
n=0

we obtain, upon comparing coefficients,

a, = q2nan _ q2n+2an + q2n—1an_1 + q4n+2an’
_ ¢! a1+
n = 2n 2y dn = T T g2y 20
(1 —¢*)(1+ ¢**2) (q% q")n(1 + g +2)

In the following, we show some details for the calculation of ajg.

F(z) is the limit of the finite determinants

1—q"+2q ¢
—1 1-— q2 + zq3 q2
-1 1-— q2 + zq5 q2
Dy(z) = . .
-1 1— q2 + Zq2n—3 q2
-1 1—q?+ zg®>n 1

Expanding this determinant with respect to the last row, we get
Dy(2) = (1 = ¢* 4+ 2¢*" ) Dp_1(2) + ¢*Dy_s(2),
Dy(z) =1, Di(2) =1—¢* + 2q. (2.14)

Since ag = F'(0) = lim D, (0), according to the recursion (2.14), we have

n—oo

D,(0) = (1 - ¢*)D,,_1(0) + ¢°D,,_5(0), Dy(0) =1, D1(0) =1—¢*
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Thus, we get the following recursion

DH(O) - Dn—l(o) = _q2(Dn—1(0) - Dn—Z(O))

|
—
|
[—
SN—
3
1
[l
[\
7
[\
—
S
—
o
SN—
|
S
—
o
N—
N—

Then we have

Finally, letting n — oo in D,,(0), we get

1
= lim D,(0) = .
ap TLI—{I;O ( ) 1 + q2

Therefore, we have

n2

- q
F<Z>:Z 1.1 s
— (¢ ¢")n(1 4+ ¢ )

n

and the left hand side of (2.8) can be expressed by F(¢*™) + ¢*F(¢*™?).
Due to (2.14), we have

Dn—m(q2m) = (1 - 6]2 + q2n_1)Dn—m—1(q2m) + q2Dn—m—2(q2m)' (2'15)

According to (2.12), (2.13), and (2.15), we notice that the sequences (D,,_,(¢*™))n,
(Pp)n, and (Qn)n satisfy the same recursion. Set

Do (*™) = A P+ 11m Q. (2.16)

We can determine the parameters A, and p,, using the initial conditions Dgy(¢*™) = 1,
Di(¢*™) = 1 — ¢* + ¢*™*1, and the recursions (2.12) and (2.13), which leads to the
evaluations

CQm—l

- PQO—l - Pm—lQm’

o Pm—l
Him Pm—lQm - PQO—l .

Am

Indeed, we have
PQO—l — Pm—lQm = (_1>m—1q2m—1’

which can be proved by induction on m. Then we have simpler forms for A, and p,,
as follows:

>\m = (_1)m—1q1—2QO_17 o, = _(_1>m—1q1—2mpm_1. (217>



Now setting m — m + 1 in (2.16), we get

Dn—m—l(q2m+2) = )\m—l—an + ,um-i-lQn-

Thus, we have

= (A + A1) Poo + (ptm + ¢ fim11) Qoo
According to (2.17), we get
Ao+ @ Amir = (=1)"¢" 72" (Qm — Q)
pom + @ pimr = (1)1 7 (P — Prnea).
Setting A, = (=1)"¢'"*™(Q,, — Qum_1), due to (2.13), we have
Ap = 2Am-1 +yAm—2

=2(=1)""' Q1 — Qm—2) + ¥(—=1)"¢" "™ (Qu—2 — Qm—3)
— [(_1)m—1(1 o q5_2m)x + (—1)mq5_2my]Qm_2 + (—1)m_1q5_2m($€ + y>Qm—3-

and

A = (=1)"¢"7*"(Qm — Q1)

( 1>m(q5—2m _'_q2m—3 o q2)Qm—2 + (_1>m(q2 o q5—2m)Qm_3.

Therefore, we get

{ (=)™ ML= M+ (1) "y = (=)™ 7" + ¢ = ),
(=D)" g (@ +y) = (=)™ (¢ — "),

Then

which means that

Ap =~ 3 A1 + Ao, Ag=1, A =0.
Similarly, setting B, = (—1)""'¢*~"(P,, — Py,_1), we obtain
By =—¢""?Bp-1+ Bma,  Bo=0, Bi=1.
Thus the above analysis has led to (2.8). |
Setting m = 1 and m = 0 in (2.8), we get the identities (2.9) and (2.11), respectively.
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Theorem 2.3 We have

(1)
e n 24o2mn 1-m(,2 10 ,12. ,12
Z qq _q (q2,q 055G ) p
— (g q)2n+1 (4 6?)m-1(; @)oo
¢ (= —q4,q6;q6)oo(—q;q2)ooQ 1 2.18)
(4 6®)m-1(¢% ¢*) o ’
where
Pm = (1+Q+q2m_1)Pm—l+(q2m_2_Q)Pm—2> PO = 17 Pl - 1+Q7
Qn=_0+q+¢"")Qm-1+ (" = Q)Qm-2, Qo=0, Q=1
(2)
i ¢ (0 = ) (0 )
- 2n (¢; ¢*)m(a* ¢ )
2 10 ,12.
_(q,q2,q q )OOBW (2.19)
(4 4*)m (¢ @)oo
where

Am - (1 +q+ q2m_2)Am—1 + (q2m_2 - Q)Am—Za AO - 17 Al = 17
Bm = (1 +q+ qzm_2>Bm—1 + (q2m—2 - Q)Bm—27 BO = 07 Bl - 2q

Proof. The identities A.29 and A.50 in Slater’s list are stated as follows.
Identity A.29 (Slater [18]):

Z(—qq)

2

(= =" %05 (45 )

_ , 2.20
— (q;q)2n (¢ ¢%)oo (2:20)
Pn = (1 +q+ q2n_1)Pn—l + (q2n_2 - Q)Pn—2a
P, = —%, Po=1 P =1+q. (2.21)
—dq
Identity A.50 (Slater [18]):

OO n 212n 2 10 12, 12

Z _(@%a" ag )oo’ (2.22)
2n+1 (qvq)oo

n=0

Po=04q+¢"YP 1+ (¢*" — q)Pus,

11



P,=0 P=1 P =14+q+¢. (2.23)

For the recursion (2.23), letting @, = P,_1, we get the recursion
Qn=(1+q+¢" "Qn 1+ ("> = q)Qn-2,
1
Q_l - ]_——q’ QO - O, Ql - 1 (224)

The polynomials P, in (2.21) and @, in (2.24) satisfy the same recursion with different
initial conditions, and converge to the right hand sides of (2.20) and (2.22), respectively.

Consider the following determinant:

14+q+29g 2¢°—q
-1 l+q+2¢°  2¢"—q
F(z) = -1 1+q+2¢° 2¢°—¢

Expanding the determinant with respect to the first column, we get
F(2) = (14 ¢+ 2q)F(2¢*) + (2¢" — @) F(2q").
Setting N
F(z)= Z anz",
n=0

we get, upon comparing coefficients,

an = ¢ an + ¢ ay + ¢ lan g + ¢ a0 — ¢ an,
(1! (g1 —q)
n = 2n ) dn—1 = = . ao-
(l_q )(l_q ) (q7Q)2n+1

Resorting to the same technique for ay in the proof of Theorem 2.2, we have ag = Iqu.

Thus, we have

F(z) = i Mzn.

=0 (¢ @)2n+1

We observe that the left hand sides of (2.18) and (2.19) can be expressed by F'(¢*™)
and F(¢*™) — qF(¢*™"?), respectively.

On the other hand, F'(z) is the limit of the finite determinants
l+qg+2q9 2¢°—q

-1 14q+2¢° 2q¢* — ¢
-1 14+q+ 2¢° 2¢% — ¢

-1 14 q+ 2z¢?"3 2" 2 — ¢
-1 14 q+ z¢® !
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Expanding this determinant with respect to the last row, we get
Dn(2) = 14+ q+ 2¢*"" ) Dp_1(2) + (2¢*" % — q) Dy_a(2),
Dy(z) =1, Di(2) =1+ q+ zq.
Then we have
Dy-m(@®™) = (L 4+ ¢+ ¢ ) Dynas(6*") + ("% = @) Duma (™). (2.25)

According to (2.21), (2.24), and (2.25), we notice that the sequences (D, (¢*™))n,
(Pp)n, and (@), satisfy the same recursion. Set

Dn—m(qzm) = A Pn + 11 Q.

We can determine the parameters ), and i, using the initial conditions Dy(¢*™) = 1,
Di(¢*™) = 1+ q + ¢*"*!, and the recursions (2.21) and (2.24), which leads to the
evaluations

Qm—l

B PQO—l - Pm—lQm’

o Pm—l
Him Pm—lQm - PQO—l .

Am

Notice that
PQO—l - Pm—lQm = _qm—l(q’ q2)m—17

which can be proved by induction on m. Then we have simpler forms for \,, and u,,

as follows: . .
g " g "
)\m - _762771—17 Pm = 77—
(€5 ¢*)m—1 (¢ ¢®)m—1

Therefore, we obtain Equation (2.18).

P, .. (2.26)

Meanwhile, we have

3 (—4;¢°)nq

= (@G

n2+4+2mn

= F(¢") — qF (")

= (Am = @mt1) Poo + (Hm — qllnt1) Qoo

According to (2.26), we get

1-m
A = @it = 7o [Qn = (1= ¢ ) Q]
1-m

Hm — qHm41 = —(7

P,—(1—¢™ P, _4].
q; q2)m[ ( JFm-1]

Setting A, = ¢ [Qm — (1 — ™" Q1] and By, = ¢ [P, — (1 — ¢*" 1P, 4],
we get Equation (2.19) as desired. |

The identities (2.20) and (2.22) are the special cases of (2.19) and (2.18), respec-
tively.
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Theorem 2.4 We have

i —q: q n 24o2mn _ (_1)mqm—m2Qm_l (_1)mqm—m2 A

— , 2.27
(,4% 4% ¢%) (4% ¢% ¢%) o (227)

where
Pm = (1+q2m_1)Pm—1+q2m_2PM—27 P—l 207 PO = 17 Pl = 1+Q7
Qm=14¢""Qm1+ " *Qum_2, Q=1 Q=0 Q=1

Proof. We use the identities A.34 and A.36 in Slater’s list to prove the theorem.

Identity A.34 (Slater [18]): The analytic version of the second Gollnitz-
Gordon partition identity.

0 n 2419n 1
Z q q (2.28)
ot (0 )

P,=1+¢"YP,_, + q2”Pn_2, P,=0 P=1 P =1+¢. (2.29)

Identity A.36 (Slater [18]): The analytic version of the first Gollnitz-
Gordon partition identity.

o0

—q; q nq 1
— , 2.30
;% (4,44 47%)eo (2:30)
Po=(1+¢"YHYP, 1+ qZ"—QPn_Q, P,=0, P=1 P =1+q (2.31)
For the recursion (2.29), letting @,, = P,_1, we get the recursion
Qn=0+¢"N0n1+¢"?Qua Q=1 Q=0,Q =1 (2.32)

Therefore, P, in (2.31) and @, in (2.32) converge to the right hand sides of (2.30) and
(2.28), respectively. In the following, they are used to prove this theorem.

Consider the following determinant:

14+2q  z¢?
-1 1423 z¢
F(z2):= -1 142z¢" z¢°

Expanding the determinant with respect to the first column, we get

F(2) = (14 2q)F(2¢*) + 2¢*F(2q").

14



Setting
F(z) = Z a,z",
n=0

we get, upon comparing coefficients,

an = ¢y + ¢ a1 + ¢ P, ,
n— n— TL2
(et (=)
an - 2n aTL—l —_— = 2 2 aO
1—gq (% ¢*)n

Since ag = 1, iteration leads to
(=4 ¢*)ng™
F(z) = "
® ; (¢% ¢*)n
and thus the left hand side of (2.27) can be expressed by F(¢*™).
On the other hand, F'(z) is the limit of the finite determinants
14+2q 2¢?

1 1+4+2¢ 2zt
-1 14 2¢° 2q8

-1 1 +Zq2n—3 Zq2n—2
-1 1 _|_Zq2n—1

Expanding this determinant with respect to the last row, we get
D,(2) = (14 2¢*" ND,_1(2) + 2¢°" 2D, _5(2), Do(z) =1, Di(z) =1+ zq.
Then we have
Dy-m(q*™) = (1 +¢*" ) Dypon-1(a"") + ¢*" " Dypom—2(q”™).

Therefore, we set
Dn—m(qzm) = AP+ Q-
Using the initial conditions Dy(¢?*™) = 1 and D;(¢*™) = 1 + ¢*™*1, we get
_ Qm—l
PQO—l - Pm—lQm’

o Pm—l
Hm Pm—lQm - QO—l ‘

Am

Indeed, we have
2

PQO—l - Pm—lQm = (_1>mqm —m’

15



which can be proved by induction on m. Then we have simpler forms for A, and p,,
as follows:

2

A = (=1)"q" "™ Qs pm = —(=1)"¢"" Py
Equation (2.27) is proved. |
The identities (2.28) and (2.30) are the special cases of Equation (2.27).

Theorem 2.5 We have

(1)
o0 2n +2mn ql—m(q?,’ q5’ q8; q8>oo(q27 q14; qlﬁ>oo
Z - 2 Pm—l
— (43 9)2n+1 (45 ¢*)m-1(2; Qoo
"(4,4", 6% ¢®) (¢, ¢"%5 ¢"0) o
— &l : Qo1 (2.33)
() m-1(¢;9)oo
where
P :(1+Q)Pm—1+(2m_2_Q>Pm—2a P0:17 P1:17
Qm=149)Qm1+(*" 2~ q)Qm_2, Qo=0, Q=1
(2)
X, gErirzmn (4.47, 6% 0" (0", 4" 0")x
. . o2 . m
— (4;9)2n (45 4*)m (45 @)oo
3 5 8. .8 2 14 16
_(q,q,q,qQ)oo(q,q 1q )ooBm’ (2.34)
(45 ¢*)m (¢ @)oo
where

Ap=0+q¢An1+ (q2m_2 — Q) A2, Ag=1, Ay =1,

Bm = (1 + Q)Bm—l + (q2m—2 - Q)Bm—2> BO = 07 Bl =dq.

Proof. We use the following identities A.38 and A.39 in Slater’s list to prove the
theorem.

Identity A.38 (Slater [18]):

o0 2n2+2n 3 5 8.8 2 14. .16
Z _ (q ,q,47,4 )oo(q ) )OO’ (235>
n:O q; q 2n+1 (q7 q)oo

P,=(1+q) P+ (¢* — q)Pn_s, P,=0,Py=1, P =1+q. (2.36)

Identity A.39 (Jackson [10]):

16



o 9 7 8.8 6 10. 16
3 _ (94505 0)0e6%, 4754 ). (2.37)
= (q:q)2n (¢ D)oo
Po=(1+q)P 1+ (¢* 2 —q)P,_o, P, = —%_qa Py=1 P =1 (2.38)
For the recursion (2.36), letting @, = P,_1, we get the recursion

Qn = (1 + q>Qn—1 + (q2n—2 — q)Qn—27 Q—l - 11?, Q(] == O, Ql =1. (239)

Therefore, P, in (2.38) and @,, in (2.39) satisfy the same recursion with different
initial conditions, and converge to the right hand sides of (2.37) and (2.35), respectively.

Consider the following determinant:

1+q z2¢*—¢q
—1 1+¢
—1

2q* — ¢

F(z): 1+¢q

2q° — ¢

Expanding the determinant with respect to the first column, we get
F(z) = 1+ @)F(2q") + (2¢" — @) F(2q").
Setting

F(z) = f: anz",
n=0

we get, upon comparing coefficients,

an = ¢ an + " lan + ¢ a0 — ¢ ay,
. g’ o _<12"2(1—q)a0
Tl =em -t (4 @)2nt1

Since ag = l%q, iteration leads to

o0 2n2
q
F(z) = E — 2"
) =0 (¢ @)2n+1

and thus the left hand sides of (2.33) and (2.34) can be expressed by F(¢*™) and
F(¢*™) — qF (¢*™2), respectively.

On the other hand, F'(z) is the limit of the finite determinants

1+q 2¢*>—q
-1 1+g¢
—1

zqt — ¢
14q 2¢°—q¢

2n—2

14+q zq
-1

1+g¢

17



Expanding this determinant with respect to the last row, we get
Dn(2) = (14 q)Dp1(2) + (2¢*" 2 — @)Dy 2(2),  Do(2) =1, Di(z) =1+q.
Then we have

Dn—m(qzm) = (1 + Q)Dn—m—l(q2m) + (qzn_Q - Q)Dn—m—2(q2m)'
Therefore, we set
Dn—m(qzm) = A Pn + 11 Q.

We can determine the parameters ), and i, using the initial conditions Dy(¢*™) = 1,
D1(¢*™) =1+ g, and the recursions (2.38) and (2.39), which leads to the evaluations

_ Qm—l
PQO—l - Pm—ICZm7

o Pm—l
Him Pm—lQm - PQO—l .

Am

We get
PQO—l - Pm—lQm = _qm_l(Q; q2)m—1>
which can be proved by induction on m. Then we have
1-m 1-m
q q
An=———Qm_1, fon = ———— P 1. (2.40)
(¢ ¢*)m—1 (4 ¢*)m—1
Therefore, Equation (2.33) is proved.
Furthermore, we have
o q2n2+2mn ) _—
———— =F(¢") — qF(¢"™)
— (¢;q)2n

= (Am = @mt1) Poo + (fim — qlims1) Qoo

According to (2.40), we get
1-m

(¢ 0®)m

1-m

)\m - q)\m—I—l = [Qm - (1 - q2m_1)Qm—1]>

o = Qhim1 = = [P, — (1= ¢*™ ") Pps].

¢ q)m

Setting A, = ¢ [Qm — (1 — ™" Q1] and By, = ¢ [P, — (1 — ¢ 1P, 4],
we obtain Equation (2.34). |

The identities (2.35) and (2.37) are the special cases of (2.33) and (2.34), respec-
tively.

18



Theorem 2.6 We have

(2.41)

(2.42)

(1)
f: g _a7e" 6% 4" a0 q2°)oop 1
n:O 2n+1 (CLq)oo
474" %% 0% (—g; q2)ooQ 1
(4% ¢*)o "
where
Pm: (1+Q+q2m_1)Pm—l_qu—2> P—l :17 PO:L Pl :1+Q7
Qum =047+ "Qu-1— qQum-2, Qai=-q¢" Q=0 Q =1
(2)
i g (@0 6% 0741
“—~ (¢:q)2n (0% ¢%)os
4 6 10. 10 2 18. 20
C(04,4% 4" 4 (d? %5 g )OOBW
(45 @)oo
where

Ap =1 +q+¢" ) An1— qAn_o, Ag=1, Ay =1,
Bm = (1 + q + q2m_2)Bm—1 - qu—2> BO = 07 Bl =4d.

Proof. The identities A.79 and A.96 are stated as follows.
Identity A.79 (Rogers [13]):

Y

i (2% 4", *; ®) oo (—4; ¢*) o
n=

(4% 4% oo
Pn:(1+Q+q2n_1)Pn—1_an—27 Py=1 K=1 PA=1+q.
Identity A.96 (Rogers [13]):
= (0865 9" ") e (@ 4" )
(4 Q)2nt1 (¢ 9)oo

Po=1+q+¢"""P,1 —qP, s, P,=0,P=1 P=1+q+¢"

For the recursion (2.46), letting @,, = P,_1, we get the recursion

Qn=>014+q¢+NNQn1—qQn 2  Q1=—-q¢" Q=0 Q =1

19
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The polynomials P, in (2.44) and @,, in (2.47) satisfy the same recursion with different
initial conditions, and converge to the right hand sides of (2.43) and (2.45), respectively.

Consider the following determinant:

I+q+2q —q
-1 1+q+z2¢° —q
F(z):=

—1 1+q+2¢8° —q

Expanding the determinant with respect to the first column, we get
F(2) = (1+q+ 2q)F(2¢*) — qF (2q").
Setting
F(z) = Z a,z",
n=0

we get, upon comparing coefficients,

a, = q2nan 4 q2n+1an 4 q2n—1an_1 . q4n+1an’
— 2
Tl =) (1 =gy " (¢ @)2n41
Since ay = ——, we have

1-¢q’
2

F(z)= Z qiz",

(4 Q)2nt1

and thus the left hand sides of (2.41) and (2.42) can be expressed by F(¢*™) and
F(g*™) — qF (¢*™"?), respectively.

On the other hand, F'(z) is the limit of the finite determinants

1+q+2q —q
-1 14+q+2¢® —q
-1 1+q+z2¢° —q
Dp(z) = . .
-1 1+q+ 23 —q

Expanding this determinant with respect to the last row, we get
D,(2) = (14 q+ 2¢*"" ) D,_1(2) — ¢Dp_2(2), Do(2) =1, Di(2) =14 q+ 2q.
Then we have

Dn—m(q2m) — (1 4 q + q2"_1)Dn_m_1(q2m) - an—m—2(q2m)-
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Therefore, we set
Dn—m(qzm) = AP + 11 Q-

According to the initial conditions Dy(¢*™) = 1 and D;(¢*™) = 1 + ¢+ ¢*™, we have
Qm—l

PQO—l - Pm—ICBm7

o Pm—l

Hm Pm—lQm - QO—l ‘

Am =

Indeed, we have
PQO—l - Pm—lQm = _qm_lv

which can be proved by induction on m. Then we have
)\m - _ql_QO—b Mm - ql_um_l. (248)
Therefore, we obtain Equation (2.41).

Furthermore, we have

X n242mn

q

G F(¢*™) = qF (¢"" )

= (Am = @imi1) Poo + (fim — qlimi1) Qoo

According to (2.48), we get
)‘m - q)‘m-i—l = ql_m(Qm - Qm—l)a
fom = Qs = —=q " (P = Prua).-

Setting A, = ¢*7"(Qm — Qu_1) and B,, = ¢~ (P,, — P_1), we obtain Equation
(2.42). |

The identities (2.43) and (2.45) are the special cases of (2.42) and (2.41), respec-
tively.

Theorem 2.7 We have

(1)

00 2m+1)n -m(,.3 7 ,10. .10 4 _16. .20
Zq _ a4 7q. )oo(q*, 4" q )oon_1
n— 2n+1 (CLq)oo
Y T ) B U X S o 1 (2.49)
m ) .
(45 0)oo

where
Pm:(1+q+q2m>Pm—1_qu—27 P—1:O7 P(]:l; P1:1+q+q27
Qm=14q+¢"™)Qm-1— ¢Qm—2, Q=1 Q=1 Q =1+
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(2)

00 2m+1)n 9 10. 10 8 12. .20
Zq _ (24,470 )= 05 g )ooAm
— (¢ q)2n (¢ @)ox
B (q?” q7’ qlo; qu)Oo(q47 qu; q20>ooB
my
(40

where

Ap=0+q+¢@" VYA 1 — qAn_a, Ap=1, A =1+yq,

Byn=014q¢+¢" )Bu1—qBnas  By=0, Bi=q.

Proof. We state the identities A.94 and A.99 in Slater’s list as follows.
Identity A.94 (Rogers [13]):
f: (0T 0% ) (0% 0% ¢2) o

2n+1 B (q7 q)oo

Y

n=

P, =(14q+¢") Py — qPus, P,=0 Ph=1 P =1+q+¢".

Identity A.99 (Rogers [13]):

iq

n=

n“+n

(2,4, 4" ¢") (%, 4" ¢*°) o
(; 9

Qn = (1 +q+ q2n)Qn—1 - QQn—27 Q—l = 1, QO = 1, Ql =1+ q2.

Consider the following determinant:

1+ ¢+ z¢? —q
-1 1+q+2¢* —q
F(z):= 1 14+ q+245 —q

Expanding the determinant with respect to the first column, we get
F(z) = (1+q+ 2¢°)F(24°) — ¢F (2q").
Setting .
= Z anz",
n=0

we get, upon comparing coefficients,

2n+1 An+1

an = q¢"a, + ¢ a, + ¢*an1 — ¢ a,,
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(2.52)
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2
" " (1 —q)

ay = pq1 == ——-"—"0qap.
(1—¢*)(1—q¢>*) (¢ Q)2ns1
Since ag = 1i we have
> qn2+n
F(z 2",
() = Z (q q)2n+1

and thus the left hand sides of (2.49) and (2.50) can be expressed by F(¢*™) and
F(¢®™) — qF (¢*™2), respectively.

On the other hand, F'(z) is the limit of the finite determinants

14 g+ 2¢* —q
-1 1+q+2¢* —q
-1 1+q+2¢° —q
Dn(z) == . . .
-1 1+q+ 2¢>"2 —q
-1 1+q+z¢™

Expanding this determinant with respect to the last row, we get
Dn(2) = (1 4+ q+ 2¢*")Dp_1(2) — qDy_o(2), Dy(z) =1, Di(2) =1+ q+ 2¢*.
Then we have

Dn—m(q2m) = (1 +q+ q2n)Dn—m—l(q2m) - an—m—Z(qzm)'
Set
Dn—m(qzm) = A Pn + Q.

Using the initial conditions Dy(¢*™) = 1 and Dy(¢*™) =1+ q + ¢*™ 2, we get

CQm—l
PQO—l - Pm—lQm’
o Pm—l
fim Pm—lQm - QO—l ‘

Am =

Indeed, we have
PQO—l - Pm—lQm = qm’

which can be proved by induction on m. Then we have simpler forms for \,, and u,,
as follows:

=q "Qm-1, i = —q " P (2.55)
Therefore, we obtain Equation (2.49).

Furthermore, we have

n2+(2m-+1)n

— ¢ T m m
> = F(¢*™) — qF(¢*"*?)
qQ2n

n=0
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= (Am = @QAm+1) Pos + (fn — qtm+1) Qoo
According to (2.55), we get
Am = @Amt1 = —q¢ " (Qm — Qm-1),
Fm = Qpmsr = 4" (P = Pa).

Setting A,, = ¢~"™(Ppn— Ppn-1) and B, = ¢ " (Qm — Qm—1), we get Equation (2.50).

The identities (2.51) and (2.53) are the special cases of (2.49) and (2.50), respec-
tively.

Theorem 2.8 We have

i (_q; q2)nqn2+2mn _ (q6. q6> p
— (40" (=% @) m-1(a* ¢4 oo (6 0% ¢") ™ "
(6% 6%, ¢% 0% (4 4P)o

(=% ¢*)m-1(0% ¢*)so

B, (2.56)

where
Am = —q2m_3Am_1 + (1 + q2m_4)Am_2, AO = 0, Al = 1,

and

1
By = —¢*"*Bp_1 + (1 4+ ¢ B,,_s, By = 5 B, =0.

Proof. The identity A.25 in Slater’s list is stated as follows:
Identity A.25 (Slater [18]):

= (—q; q nq _(@*¢% 0% ) (—4: 6" ) (2.57)
HZ% (4% ¢%)oo '

Sills [17] gave the following recursion for (2.57).

2

Pn: (1_q2+q2n_1)Pn—l+(q2+q2n_2)Pn—27 P—l = %qQa P(): ]-7 Pl = 1+q
(2.58)
Recently, McLaughlin et al. [12] found a partner to Equation (2.57).
An identity (McLaughlin et al. [12, Eq. (2.7)]):
o n2+42n 6. 6
> Ll L) 259
o T (050 (0 0% )
For this identity, we also have
Qn = (1 - q2 + q2n_1>Qn—1 + (q2 + q2n—2>Qn_2’ (26())
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where P, and @, converge to the right hand sides of (2.57) and (2.59). The initial
conditions for @), is given in the following analysis.

Consider the following determinant:

1-¢*+2q ¢+ 2¢?
-1 1 - +2¢° ¢+ z2¢*
F(z):= 1 1— @ +2¢8° @+ 2¢°

Expanding the determinant with respect to the first column, we get
F(z) = (1 - ¢+ 20)F(2¢°) + (¢ + 26*) F (2¢").
Setting N
F(z)= Z anz",
n=0

we get, upon comparing coefficients,
_2n 2n+2 2n—1 4An+2 4n—2
an =q an —( an+q an—l_l_q an_l_q Ap—1,

(1+ g™ g ! (s + )

n — CLn_ = = agp.
(1 _ q2n)(1 + q2n+2) 1 (q4’ q4)n(1 + q2n+2) 0

1
1+q2?

Since ag = iteration leads to

& P,
F(Z) = Z 1 z )

(g q*)n(1 + g2 +2)

n=0
and thus the left hand side of (2.56) can be expressed by F(¢*™) + ¢*F (¢*™+?).
On the other hand, F'(z) is the limit of the finite determinants

1—¢*+2¢ ¢+ 2¢°
-1 1—¢®+z2¢2 P +z2¢2
-1 1-¢?+2¢° ¢ +2¢°
1 1= @4 2g23 24 2202
-1 1-— q2 + zq2"_1

Expanding this determinant with respect to the last row, we get

Dp(2) = (1 = ¢* + 24" ) Dp_1(2) + (¢ + 2¢°" %) Dy —a(2),
Dy(z) =1, Di(2) =1— q2 + 2q.

Then we have
Dn—m(qzm) = (1 - q2 + q2n_1)Dn—m—l(q2m) + (q2 + qzn_2)Dn—m—2(q2m)'

25



Noticing that Q. is F(¢*) + ¢*F(q"), we have

Qn = Dn—l(q2> + q2Dn—2(q4>’
then we get the initial conditions for Q,,: Qo =1/2 and @1 = 1.

Since the sequences (D,,_(¢*™))n, (Py)n, and (Q,,),, satisfy the same recursion, we
set

Dyin(4*™) = A P + 110 Q-
According to the initial conditions Dy(¢*™) = 1 and D;(¢*™) = 1 —¢? +¢*™*!, we have
_ CQm—l
PQO—l - Pm—lQm’
Pm—l
Hm = .
Pm—lQm - PQO—l

Am

Indeed, we have
PQO—l - Pm—lQm = (_1>mq2m—2(1 - Q)(_q27 q2)m—27
which can be proved by induction on m.

Therefore, we have simpler forms for A,, and p,, as follows:

—1)ym 2—2m —1)ym 2—2m
(1 _(q)()_;;q2)m_2@m_1, Hm == 1" P (2.61)

Am =
(1= @) (=% ¢*)m—2
Moreover, we observe that

0 (_q;q2)nqn2+2mn . -
> (G g = F(¢®™) + ¢*F(¢°"?)

= ()‘m + q2)\m+1)Poo + (,um + q2,um+l)Qoo-

n=0

According to (2.61), we get
(_1)mq2—2m
(1 = @) (=% ¢*)m—1
(_1>mq2—2m
1= q)(—¢*%¢*)m—

)\m + q2)\m+l = - [Qm - (1 + q2m_2)Qm—1]>

[Pm - (1 + q2m_2)Pm—l]-

[ + @ a1 = (
Setting

A = ()" [P — (14 ¢ 7*) Pua] /(1 = ),

By = (=1)"¢*"[Qm — (1 +¢*"7*)Qm-1]/(1 = q),

we get Equation (2.56). |
The identities (2.57) and (2.59) are the special cases of (2.56), respectively.
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3 Generalizations of identities with four-term re-
cursions

In this section, we apply the determinant method to the Rogers-Ramanujan type iden-
tities with the four-term recursions of the polynomials which converge to the right hand
sides of the identities in [17]. Moreover, we generalize some new identities in recent
papers [6,12]. During the calculation, some properties of determinants are used to
simplify the identities.

Three identities are used to prove each theorem. For convenience, we give the same
recursions for the polynomials P,, @), and R,, by shifting the index of the recursions
given by Sills in [17], like the way we have done in the previous section, where P,, @,
and R,, converge to the right hand sides of the identities in Slater’s list .

Theorem 3.1 We have

(1)

o 2n24+2mn -m 6 7 -m(,2 .5 7
4 _q (q,2q,2q7q)ooAm+q (q;q;q,q)mBm
(% ¢*)n(—¢ @)2nt1 (4% ¢%)oo (g% %)
"™ 4454 )
+ Ch, 3.1
(4% ¢®)o (3:1)
where
Am = _(1 + q2m_4>Am—1 + q2Am—2 + q2Am—37
AO = —q, Al =dq, A2 = —q,
Bm = _(1 + q2m_4)Bm—1 + q2Bm—2 + qum—37
B():Oa Blzoa BZZQ7
Cm = _(1 + q2m_4)Cm—1 + qsz—2 + q2Cm—37
Co=1, C, =0, Cy = 0.
(2)
o 2n24-2mn 6 7.7 2 5 7.7
¢ :(q,qz,qéq)ooEmjL(q,qz,q27q)ooFm
(@ @)= Q2n (6% ¢*)oo (4% ¢*)
3 4 7.7
+(q,q,q,q)oon7 (3.2)

(0% 4%
where

Em = _(q + q2m_3)Em—1 + Em—2 + qu—37
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E0:07 E1:07 EZZQ7
Fm: _(Q+q2m_3)Fm—1+Fm—2+qu—37
F0:O7 F1:17 FZZ_Q7

Gm = _(q + q2m—3)Gm_1 + Gm—2 + qu—37
G():l, G1:0, G2:1

Proof. The identities A.31, A.32, and A.33 in Slater’s list are stated as follows.

Identity A.31 (Rogers [14] and Selberg [16]): The third Rogers-Selberg
identity.

© 2n242n

q _(0,¢6%,4% ) (3.3)
= (% ¢*)n(~a @)2nt (% 6%)
Pn = (1 —q— q2)Pn—1 + (q2n - q3 + q2 + Q)Pn—2 + qun—37
Po=1 P=1—q, Pb=1—-q+¢+¢" (3.4)

Identity A.32 (Rogers [13] and Selberg [16]): The second Rogers-Selberg
identity.

> 2n2+42n

q _ (%4454 (3.5)
= (% ¢*)n(—4; @)2n (%560
Qn = (1 —q— q2>Qn—1 + (q2n - q3 + q2 + Q)Qn—2 + qan—37
Q=1 Q=1 Q=1+g" (3.6)

Identity A.33 (Rogers [13] and Selberg [16]): The first Rogers-Selberg
identity.

0 2n2 3 4 7.7
S 2q :(q,qz,qz,q)oo’ (37)
— (4% ¢*)n(—4; Q)2n (42540

n=0
Ri=01-q¢—¢ )R+ (@ =@+ +qRu2+ ¢ Rys,
Ry=1 Ri=1+¢, Ry=1+¢ ¢ (3.8)

The polynomials P,, @,, and R,, converge to the right hand sides of (3.3), (3.5), and
(3.7), respectively.

Consider the following determinant:

1—qg—q¢* 2> - +¢*+q¢ ¢
~1 1—q—¢ 2t — P+ +q ¢

1-q—¢* -+ +q ¢
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Expanding the determinant with respect to the first column, we get
F(2) = (1= q— ¢ )F(2¢°) + (2¢° = ¢’ + ¢ + Q) F(2q") + ¢’ F (2¢°).
Setting N
F(z) = Z a,z",
n=0

we get, upon comparing coefficients,

a, = q2nan o q2n+lan . q2n+2an 4 q4n—2an_1 o q4n+3an + q4n+2an + q4n+lan 4 qﬁn—ﬁ-?)an7
a, = [ Uy g =+ = q2”2(1+q>(1+q2)a0
B [ e [C IR R (4% %)~ D202
Since ag = WIHqu we have
o0 q2n2
F(z) = 2",
) ,LZ:O (4% @*)n(=¢; @)anta
Thus we get
e q2n2+2mn ) ) _—
= F(¢"™) + ¢"F ("), (3.9)
= (% ¢*)n( =4 @)2nt1
e n2+2mn
gt — (g2 2) F( 22 3 (g 2m+4 310
> = F(™) + (¢ + )F (@) + ¢#F(@™Y).  (3.10)

(@ ¢*)n(—¢;q)2n

n=0

On the other hand, F'(z) is the limit of the finite determinants

1—g—¢* 2¢* - +¢*+q ¢
-1 1—qg—¢? 2P =P+ +q ¢
Dn(z) = : ’ . - ..
_1 l_q_qQ Zq2n72_q3+q2+q

-1 l—q—¢°
Expanding this determinant with respect to the last row, we get

Dn(z) - (1 —q— q2)Dn—1(z) + (ZC]%_Q - q3 + q2 + q)Dn—Q(Z) + qun—3(2)7
Do(z) =1, Di(2) =1—q—¢° Da(2) =1—q+¢*+¢" + 2¢".

Then we have
Drmi1(¢*™) = (1=¢=") D (¢*™) +(¢*" =+ +¢) D1 (™) +¢* D2 (™).
Since (Dp—mi1(6%™))n, (Po)n, (Qn)n, and (R,), satisfy the same recursion, we set

Dn—m+1(q2m) = )‘mpn + ,qun + VmRn-
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Using the initial conditions Dy(¢*") = 1, Di1(¢*™) = 1 — q — ¢*, and Dy(¢*™) =
1—q+ ¢+ q¢*+ ¢ 2, we have

]_ Qm—l Rm—l
l—qg—¢ Qm  Rm
W 1mat @A AT Qi R
" Pm—l Qm—l Rm—l ’
Pm+1 Qm-i—l Rm+1
Pm—l 1 Rm—l
P 1=q¢+ @+ ¢+ ¢ Run
Hm = >
Pm—l CQm—l Rm—l
Pm+1 Qm+l Rm-i—l
Pm—l CQm—l 1
P Qn l—q—¢
Puii Qumin 1—q+¢ +q 4+ ¢
Uy, =

Pm—l Qm—l Rm—l
Pm+1 Qm—i—l Rm+1

Indeed, we have
Pm—l Qm—l Rm—l
P, Qn Rn |=-¢"". (3.11)

Pm+1 Qm-i—l Rm+1

The proof of (3.11) is by induction on m. The case m = 0 is trivial.

Py Qo Ry
P R | = —q5.
P, Qy Ry

The recursions (3.4), (3.6), (3.8), and some properties of determinants are used in the
following induction step.

P, m Qm Rm
P, m+1 Qm-i—l Rm+1
P m+2 Qm+2 Rm+2

= Pm+1 Qm—i—l Rm+1
1=q¢—¢*)Pny1 1-q¢—¢*)Qmi1 (1—q¢—¢*)Rms1
Py, Qm Ry,
+ Pt Qm+1 Ryt
@™ =P+ + )P (@@ =P+ P+ 0)Qm (@@~ + P+ )R
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+| Pny1 Qmi1 Bmi
PPt Qm-1 R
Pm—l Qm—l Rm—l
:q3 Pm Qm Rm
Pm+1 Qm-i—l Rm+1

Therefore, we have simpler forms for A,,, i, and v, as follows:

1 Qm—l Rm—l
1—qg—¢* Qm  Rn
1—g+ @+ + @2 Qmi1 R
A, = — o : (3.12)
Pm—l 1 Rm—l
| Pan 1—q+@+¢"+ ¢ R
Hm = — q3m+2 )
Pm—l Qm—l 1
Pn  Qn 1—qg—¢*
Pt Qumir 1—q+¢+¢*+ ¢
Vm = — PR

According to (3.9) and (3.10), by setting

A = q" (A + @ Amt), Em = A+ (¢ + @) Amst + P A,
B =dq (,um +4q Mm+1)> and Fm = fm + (q +q ),um-i—l + q3,um+2>
Crn = q" (Vi + ¢*Vms1), G = Vi + (¢ + @)ms1 + P2,
we have

© 2n +2mn

> = = " AnPoc + 4" BrnQoo + ¢ " Cin R,

=0 (¢*:q —; q)2n+1

> 2n +2mn
~¢;q)2n

n=

In the following, we only present the calculation for A,, = ¢™(A\n + ¢*Apmy1). Others
are similar.

According to (3.12), using the same technique in the proof of (3.11), we have

Am = qm()‘m + q2)‘m+1)

1 Qm—l Rm—l
1- q Qm Rm
l—g+ @+ Qmir Run
- g2 +2
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0 Qm—2 Rm—2
1 Qm—l Rm—l
1- q Qm Rm

q2m—1

After calculating A,,_1, A,,_2, and A,,_s which have the same last two columns in the
determinants as A,,, we set A,, = vA,,_1 + yA,,_o + 2zA,,_3. Solve the equation, then
we get

Am = _(1 + q2m_4>Am—1 + q2Am—2 + q2Am—3-
Using (3.12) and the initial conditions of P,, @,, and R,, we have Ay = —q, A; = ¢,

and As = —q. Following the same way, we calculate the recursions of B,,, C,,, E,
F,,, and G,, in turn. Then we obtain (3.1) and (3.2). |

Notice that (3.3) is a special case of (3.1), and (3.5) and (3.7) are the special cases
of (3.2).

Theorem 3.2 We have

(1)

i ¢ (g% 4" "o | N (¢4, 4", 4" ¢
= (q;4*)n41(0: Dn (¢ 4)oo " (¢ 4)oo "
6 8 14. 14
N (¢®,¢% ¢ q )ooym’ (3.13)
(40
where
)\m = (1 + qm_3))\m—1 + q_l)‘m—2 - q_1>\m—37
)\0:(], >\1:O, )\2:1,
o = (14 ¢ 1 + ¢ om—2 — ¢ a3,
,u(]:o, :u1:17 ,u2:07
U = (1L + ¢ W1 + ¢ Wino — ¢ s,
1/0:1, 1/1:0, 1/2:0.
(2)
0 n 24tmn 2 12 14. 14 4 10 14. 14
Z _ (@47, 0% )ooE.m+(Q7q N )ooFm
— (43 @)n (¢; 9)os (¢ 4)os
6 .8 14. 14
+(q,q,q iq )oon’ (3.14)
(45 0)oo
where

Em = (1 + qm_l)Em—l + qu—2 - qu—37
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Ey=0, By =—q, By =—q— ¢,

Fm: (1+qm_1)Fm—1+qu—2_qu—37
F0:07 F1:O7 F2:_q7

Gm = (1 + qm_l)Gm—l + qu—Q - qu—37
G():l, Glzl, G2:1+q

Proof. The identities A.59, A.60, and A.61 in slater’s list are stated as follows.
Identity A.59 (Rogers [14]):

oo gren _ (@, 4", g™ ¢") oo 5.15)
(4 )41 (@ D (¢ Do
Pn == Pn—l + (q + qn>Pn—2 - an—37
P(]:O, Plzl, P2:1 (316)
Identity A.60 (Rogers [14]):
oo g _ (4%, 4", g™ ¢") oo 317
(G )41 (@3 D (¢ Do
Qn = Qn—l + (q + qn>Qn—2 - QQn—37
Q=1 Q=1 Q=1+q+¢". (3.18)
Identity A.61 (Rogers [13]):
o] qn2 _ (q6’ qS’ q14; q14)00 (319>
(¢ )G ) (¢ Ve
Rn = Rn—l + (q + qn)Rn—2 - an—37
Ry=1 Ri=1+q, Ry=1+q+ ¢~ (3.20)

The polynomials P,, @,, and R, converge to the right hand sides of (3.15), (3.17),
and (3.19), respectively.

Consider the following determinant:
1 g+ 2q —q

—1 1 q+ zq2 —q

F(z) = —1 1 q+2¢¢ —q

33



Expanding the determinant with respect to the first column, we get
F(z) = F(zq) + (q+ 2q) F(2¢*) — qF (2¢°).
Setting
F(z) = Z anz",
n=0

we get, upon comparing coefficients,

Ay = q”an -+ q2n+1an 4 q2n—1an_1 . q3n+1an’
2n—1 2 -
n = 2g+1 ~Op—1 == q2 ( q) ao.
Since ag = %q’ we have

n2

Fle) = 2:: (¢; q2)q -

—~ n1(¢; On

Thus we get

o n2+mn

Z( d = F(q™), (3.21)

= (430%)n+1(¢ @)

n2+mn

2. m = F(¢") —aF(q""?). (3.22)

n=0

On the other hand, F'(z) is the limit of the finite determinants

1 g+ z2¢q —q

—1 1 q+2¢> —q

Dy(z) =] : : R .

—1 1 g+ z¢" !
-1 1

Expanding this determinant with respect to the last row, we get

DN(Z) = Dn—l(z) + (C] + an_l)Dn—Z(Z) - an—S(Z)a
Do(2) =1, Di(2) =1, Dy(z) =14 q+ 2q.

Then we have
Drnms1(¢") = Dn-m(q™) + (¢ + ¢") Dn-m-1(¢") = ¢Dn-m—2(¢").
Since (Dp—m+1(¢"™))ns (Pu)ns (@n)n, and (Ry,),, satisfy the same recursion, we set

Dn—m—l-l(qm) = A\ Py + ,qun + U Ry
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Using the initial conditions Dy(¢™) = 1, D1(¢™) = 1, and Dy(¢™) =1+ ¢+ ¢™, we

have

where

1 Qm—l Rm—l
1 Qm  Rn
1+q¢+q¢™" Qmy1 R
Pm—l Qm—l Rm—l
Pm Qm Rm
Pm+1 Qm-i—l Rm+1
Pm—l 1 Rm—l
P, 1 R,
Ppyi 14q¢+¢™" Ry
Pm—l CQm—l Rm—l
Pm+1 Qm+l Rm-i—l
Pm—l Qm—l 1
Pn  Qn 1
Ppi1 Qmyr 14+q+¢m
Pm—l Qm—l Rm—l
Pm+1 Qm—i—l Rm+1

M =

Pm—l Qm—l Rm—l
Pm Qm Rm = (_1)m—1qm7
Pm+1 Qm-i—l Rm+1

which can be proved by induction on m. Therefore, we have simpler forms for A, pin,

and v, as follows:

0 Qm—2 Rm—2
—1)™
)\m:(m—)l 1 Qm—l Rm—l )
I I Qu Rn
Pm—2 0 Rm—Z
—1)™
,Um:(m_)l Pn1 1 Rpa )
I P, 1 R,
Pm—2 Qm—2 0
_1m
Vm:(m_>1 Pm—l Qm—l 1
I Po  Qu 1

According to (3.21) and (3.22), by setting

Em - )\m - (])\m+2>
Fow = tm — qlima2,
Gm = Vm — qVm+2,
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we have
o0 n 24mn

n=0

(q,q w1 (@

2—|—mn

Mg

By calculating \,,_1, A2, A3 with the same last columns in the determinants as

n=

Am, we find a linear equation
A= (14" ) A1 + ¢ Az — ¢ s
Using the initial conditions of P,, @,, and R,, we have
M=¢ M =0, \y=1.

Proceeding in the same way, we get the recursions of p,,, Vm, Em, Fin, and G,,. There-
fore, we obtain (3.13) and (3.14). |

The identities (3.15) and (3.17) are the special cases of (3.13), and the identity
(3.19) is a special cases of (3.14).

Theorem 3.3 We have

(1)

i g" R (6% 050 )oe(e 05 0 oo (<0 D)o
n— q;q n+1 Qa Q) (qvq)oo "
—m 6 7.7 5 9. ,14 PR
L4 (:4% 4" 0 )00 (0°, 4”5 4" o ( q,q)ooBm
(¢;0)
-m(. 3 4 7.7 13. 14 PN
L4 (°,q4%,q"q )(oo(q;q 1) oo(—a; q)oocm’ (3.23)
45 q)oo

where
Am = qu—l + (q + qm_1>Am—2 - q2Am—37
Ag=1, A1 =0, Ay =q,

Bm == qu—l + (q + qm_1>Bm—2 - qum—37
BOIO, 31:0, BQI—

Cm = qu—l + (q + qm_l)cm—Z - q20m—3a
C():O, C’lzq, CQIO
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(2)

f: g R (g q)oo(q‘"’, 50 oo 0 0)0
. 9. .
+(Q>Q>QaQ)oo(Q>Qaq B oo q,q)ooFm
(45 @)oo
3 .4 7.7 13 .
+(Q7Q7Q7Q)oo(( ,q) 5 M) oo Q7Q)00Gm’
4 @)oo

where
Em = Lpyp—1 + (q + qm_l)Em—2 - qu—37
Ey=0, E1=0, By =—
Fm =Ilpmt (q + qm_l)Fm—Q - qu—37
F0:17 Flzla F2:1+Q7

Gm = Gm—l + (q + qm_l)Gm—Q - qu—37
G0:07 GIZ_Q7 GQZ_

Proof. The identities A.80, A.81, and A.82 are stated as follows.
Identity A.80 (Rogers [14]):

>

¢ (@00 )w(@ 0 M) (0 )

2)pi1(¢ On (¢ @)oo

)

Pn = (1 + qn)Pn—l + an—2 - an—37
Po=1 Pi=1+q Po=1+2¢+¢+¢.
Identity A.81 (Rogers [14]):
i "2 (0% 47 4)0o (05 4% 4 oo (— 05 @)
4 Dn

(¢ 9)oo

Y

n:O

Qn = (1 + qn>Qn—1 + QQn—2 - QQn—37
Q=1 Q1=14¢q, Q=1+q+¢+¢"

Identity A.82 (Rogers [14]):

> s

n:O

¢ (6% 4% 4700 (9, 4" 4o (— 0 @)

2)pt1(¢; @n (459

Y
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



Rn - (1 + qn)Rn—l + an—2 - an—?n

R(] = O, R1 = 1, Rg =1+ q2. (330)

The polynomials P,, @,, and R, converge to the right hand sides of (3.25), (3.27),
and (3.29), respectively.

Consider the following determinant:

1+ zq q —q
—1 1+ 2z¢* q —q
F(z) = —1 1+z2¢> q¢ —q

Expanding the determinant with respect to the first column, we get
F(z) = (14 29)F(29) + qF(2¢°) — ¢F (2¢%).

Setting

o
= E an2",
n=0

we get, upon comparing coefficients,

an = q"an + "1 + ¢ ay — ¢ ay,
a, = qn Ap_1 ="+ = Q(n2+n)/2(1 _ Q) ap
(L—g* ) (1 —q") (45 ¢*)n+1(g; Dn
Since ag = 1%(1, we have
0 (n?4n)/2
-3
— 2)ns1(G On
Thus we get
i qn(n+2m+1)/2 ( ) ( )
— F(¢™), 3.31
— (¢ 6*)n+1(0 Dn
0 n(n+2m+1)/ )
Z wa. = @) —aF @), (3.32)
On the other hand, F'(z) is the limit of the finite determinants
1+ 2q q —q
-1 1+4+z2¢* ¢ —q
D, (z) = : ‘ -
—1 14 2¢"! q
—1 1+ 2q"

38



Expanding this determinant with respect to the last row, we get

Dn(z) = (1 + an)Dn—l(Z) + an—Q(z) - an—?)(Z)a
Do(z) =1, Di(z) = 1+ 2q, Dy(2) =1+ q+2q+ 2¢° + 2°¢".

Then we have
Dnom(q™) = (L +¢") Dnm1(¢™) + ¢Dnm—2(¢") = ¢Dnm—3(q"™).
Since (Dy—m(q™))ns (Po)ns (@n)n, and (R,,), satisfy the same recursion, we set
Dy n(q™) = An P+ i Qn + v R

Using the initial conditions Dy(¢g™) = 1, Di(¢™) = 1+ ¢™", and Dy(¢™) =1+ q +
qm+1 + qm+2 + q2m+3’ we have

O Qm—l Rm—l
1 Qm R,
1+¢™ Qumir R

)\m - )
Pm—l Qm—l Rm—l
Pm Qm Rm
Pm+1 Qm-}—l Rm+1
Pm—l 0 Rm—l
P, 1 R,,
Ppi1 14+¢™ Ry
Hm = ’
Pm—l CQm—l Rm—l
Pm Qm Rm
Pm-I—l Qm+l Rm-i—l
Pm—l Qm—l 0
Pn  Qn 1
| Papr @Qmar 1+ g™t

Pm—l Qm—l Rm—l
Pm+1 Qm—i—l Rm+1

where
Pm—l Qm—l Rm—l
P, Qm Ry, = (_1)m—1qm’
Pny1 Qmir Bma
which can be proved by induction on m. Therefore, we have simpler forms for A, pin,
and v, as follows:

0 Qm—Q Rm—2
_1 m
)\m = ( m> 0 Qm—l Rm—l )
K 1 Qn Rn
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Pm—2 0 Rm—2
—1)ym
Hm = ( m—>1 Pm—l 0 Rm—l )
q Pn 1 Ry,
Pm—2 C2m—2 O
—1)™
Vm = ( m—)l Pm—l CQm—l 0
I P Qum 1

According to (3.31) and (3.32), by setting

Am = qm)\ma Em = >\m - q)\m+27
Bm - qm,uma and Fm = MUm — qltm42,
Crm = q"Vp, Gm = Vi — @Umy2,
we have
0 n (n+2m+1)/2
= q_mAmPoo + q_mBono + q_mCmRom
0 n(n+2m+1)/2
Z = EnPo + FnQoo + G Rec.
— (@5 @)n
Since
O Qm—2 Rm—Q
Am = (_1)m 0 Qm—l Rm—l ;
¢ Quw Rn

by calculating A,,_1, A2, A,n_3 with the same last columns in the determinants as
A,,, we find a linear equation

Am = qu—l + (q + qm_1>Am—2 - q2Am—3-
Using the initial conditions of P,, @,,, and R,,, we have
A(]:l, A1:0, Agzq

Proceeding in the same way, we get the recursions of B,,, C,,, E,, F,, and G,,.
Therefore, we obtain (3.23) and (3.24). |

The identities (3.25) and (3.29) are the special cases of (3.23), and (3.27) is a special
case of (3.24).

Theorem 3.4 We have

(1)

n2+4+2mn

i +1q IO Y Y P Ul e S o K WL

0 2)an+1 - (6% ¢*) "
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—-m 13 14. 14 28 e 2
L4 (0.4, 4" q )002( Joo q,q)ooBm
(¢%q )
—m( 5 9 14. 14 .2
L4 (@°, 4%, 4" ") oo (@, ¢ %) o (— qu)oocmj
(4% ¢%) o
(3.33)

where
Am = Am—l + (q2 + qzm_4>Am—2 - q2Am—37
AQZ]_, A1:0, AQZO,

Bm == Bm—l + (q2 + qzm_4>Bm—2 - qum—37
By =0, Bi=0, By =—

Cm = Um—1 + (q2 + q2m—4)Cm_2 - q2Cm—37
Co=4q, Ci=¢q, C3=q.

(2)
(= )nd T (60", 0 0o (6 675 0% oo (— 05 4D)oo
> = E
—~ (¢ (% ¢*)so
N (0,4, 0" ") (0", 4% %) o (— 5 q2)ooF
(0% 4% "
(@°, 4%, ¢"; "o (0, 5 ¢°®) o (=4 %) o
+ Gm, (334
(4% ¢?) s (3:34)
where
Em = qu—l + (1 + q2m_4)Em—2 - qu—37
Ey=1, B, =0, By =1,
Fm = qu—l + (1 + q2m_4)Fm—2 - qu—37
Fo=0, I1=1, F, =0,
Gm = qu—l + (1 + q2m_4)Gm—2 - qu—37
Go=0, Gi =0, Gy =—
Proof. We give the identities A.117, A.118, and A.119 as follows.
Identity A.117 (Slater [18]):
f: ' 7 nq _ (@ ", a0 oo (@, %% %) oo (— 5 4P (3.35)
— (4% 4%)os ’

Po=0+q—@+¢ NP+ (P +¢ —q)Pua— ¢*Py_s,

41



Po=1 P=1+q P=14+q+¢@+¢" (3.36)
Identity A.118 (Slater [18]):

2 n2+42n

o0 . 13 14. 14 12 16. 28 e A2
Z( ¢4 )ng (407,00 (@, 0% 6% ) 0o (45 ¢%) o (3.37)

(¢%%)2m (42 4%)oo
Q=0+ +¢" Q1+ (P + ¢~ )Qn2—*Qn_s,
Q=1 Q=1 Q=1+¢" (3.38)

Identity A.119 (Slater [18]):

n2+2n

i (=¢:¢")nrd™ ™" (0, 0°, 4" 4o (0", 4*5 4o (=45 6*) (3.30)
£ $4%)2n+1 (4% ¢°) ’

Ri=(1+q—+¢" R+ (@ +¢* = q)Rn2— ¢*Ry_s,
Ry=0, Ri=1, Ro=1+4+q+¢> (3.40)

The polynomials P,, @,, and R,, converge to the right hand sides of (3.35), (3.37), and
(3.39), respectively.

Consider the following determinant:

l+q—¢+z2¢g ¢F+¢—q¢ —¢*
-1 l+g—¢+2¢* ¢F+¢—q —¢*
F(z):= 1 2 5 .34 2 3

l+q—q¢+2¢° ¢©+q¢ —q —q

Expanding the determinant with respect to the first column, we get
F(z) = (1+q— ¢ +20)F(2¢°) + (¢° + ¢* = ¢) F(2q") — ¢*F (2¢°).
Setting
n=0

we get, upon comparing coefficients,

a = qzn_l a 1 e I qnz(l _ Q)(l + Q2) ao
T -+ gt T (0% ) (q; ¢ i1 (=02 ¢*)nta
Since ag = WllJqu)’ using some calculations of the ¢-shifted factorial, we have

e e}

R (e
(4% 4%)2nt1 1+q2”+2)

n=
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Thus we get

0 n24+2mn
Z —dq; q "+1q F( 2m> —|—q2F( 2m+2) (341>
n— 2n+1

- —dq; q q" S 2mn 2 2 2m+2 3 2m-+4

Z = F(¢®™) + (¢ — ) F(¢®""?) — ¢ F ("), (3.42)

On the other hand, F'(z) is the limit of the finite determinants

1+q—q¢*+2q P +q*—q —¢3
-1 l+a-a*+26 ¢*+¢*—q -¢*
D7L(Z)5: ’ ., . .
—1 1+q_q2+zq2n73 q3+q2_q

—1 1+q_q2+zq2n71

Expanding this determinant with respect to the last row, we get

Dp(z)=(1+q—¢ +2¢" ") Dp1(2) + (¢® + ¢* — ¢)Dy—2(2) — ¢*Dpn_3(2),
Do(z) =1, Di(2) =1+4q—¢*+ zq,
Dy(2) =1+q— ¢’ +q" +2q+2¢* + 2¢" — 2¢° + 2°¢".

Then we have

Dy-m(d*™) = (144" +*""") Dpoyn-1(a*™) +(¢° +4° = @) Du-m—2(4*") = ¢* Du—m—3(¢*").

Since (Dy_m(@*™ ) ny (Poudn, (Qn)n, and (R,), satisfy the same recursion, we set
Doen(@®™) = APy + i Qn + Vi R

Using the initial conditions D_1(¢*™) = 0, Do(¢*™) = 1, and D{(¢*™) =1+ q— ¢* +

¢*™ 1 we have

0 Qm—l Rm—l

1 @m  Rm
\ 14¢—¢@+ ¢ Qumir R

" Ppt Qu-1i R ’
PM-H Qm-l—l Rm-l—l

P, 0 Ry

P, 1 R,
= Popi 1+q¢— ¢+ Rup

Pm—l CQm—l Rm—l
Pm+1 Qm—i—l Rm+1
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Pm—l Qm—l O
P Qn 1
Poii Qumir 14+q—¢ +¢m"!
Vi = 5
Pm—l Qm—l Rm—l
Pm Qm Rm
Pm+1 Qm-}—l Rm+1

where
Pm—l CQm—l Rm—l
Pm Qm Rm = (_1>mq3m’
Pt Qmir Rmir
which can be proved by induction on m. Therefore, we have simpler forms for \,,, pin,
and v, as follows:

(_1)m—1 O Qm—Z Rm—Z
)\m = T 3m_3 0 Qm—l Rm—l )
4 1 Qn Rn
P, 0 R,_
_1 m—1 m—2 m—2
Hm = ( 371_3 Pm—l 0 Rm—l ’
4 P, 1 R,
1| Pn2 Qm—o O
1)m 1 m—2 m—2
VUm ( 377)1_3 Pm—l Qm—l O
K Pp  Qu 1

According to (3.41) and (3.42), by setting

Am = qm(>\m + q2>\m+1)7 Em = >\m + (q2 - Q>>\m+1 - q3>\m+27
Bm = qm(,um + q2l~bm+1), and Fm = Um + (q2 - Q),um—i-l - q3Nm+27
Cm = qm(Vm + q2Vm+1)7 Gm = Vpy + (q2 - q>Vm+1 - q3Vm+27
we have
> 2 n2+4+2mn
=g:¢ >"2+1q = ¢ " AP + ¢ " BpQoo + ¢ Cr R,
—~  (¢¢)2mn
X 2 n24+2mn
~ (G
Since

_ —1 qQum—2 qlRm—o
—1)m 1
L 0 Qm—l Rm—l )
I Qn Ry,

by calculating A,,_1, A,_2, A,n_3 with the same last columns in the determinants as
A,,, we find a linear equation

Am = Am—l + (q2 + q2m_4)Am—2 - q2Am—3-
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Using the initial conditions of P,, @,,, and R,, we have
A():l, A1:O, AQZO

Proceeding in the same way, we get the recursions of B,,, C,,, E,, F,, and G,,.
Therefore, we obtain (3.33) and (3.34). |

The identity (3.39) is a special case of (3.33), and (3.35) and (3.37) are the special
cases of (3.34).

Theorem 3.5 We have

(1)
S N G VA B G e Y L R U
Z o 2. 2 Am
— n+1(q q)n (4% ¢%) oo
L DM@ 6 (6% )
(%) 0(® )o@ ¢Y) e
(=1)"q™(—=q, =4, ¢°; ¢°) oo (¢; ¢*) o
+ C,  (3.43
(¢%¢%) o (3:43)
where
Am = (1 + q2m_4)Am—1 + (q2 + q2m_4)Am—2 - q2Am—3>
Ap=1, A, =0, Ay =0,
Bm - (1 + q2m_4)Bm—1 + (q2 + q2m_4)Bm—2 - q2Bm—3>
BO:_Q7 BIZ_Q7 By = —
Cm = (1 + q2m—4)cm_1 + (q2 + q2m—4)cm_2 - q20m—3a
00:0, 01:0, ngq.
(2)
- ) 7 (=@, =%, 0% 07) oo P)oo
Z - 2. 2 Ey,
— Jn(a*; q*)n (4% ¢*) oo
(qlo; qlo)w(qzo; q20)oo F
(45 4% oo (4°; ¢) o0 (0% ¢4) o
(—¢, —4* ¢°: ¢°)oo (¢ 4*) o
+ G, 3.44
(% ¢%) oo (3:44)
where

Ep=—(q+¢" ) Ep1+ 1+ ¢ ") En_s + qEp_s,
E(]:l, E1:O, Egzl,
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Fn=—(q+ " )+ 1+ NE o+ Fps,
FOZO; F1=O, F2:2q,

En=—(q+¢")Gmn 1+ 1+ G+ qGs,
Go=0, Gi=1, Go=—

Proof. The identity A.21 in Slater’s list is stated as follows.
Identity A.21 (Slater [18]):

S n? .2 3 .5 .5 L2
Z *)ng" _ (=7 Q7Q7Q>OO(Q7Q)00. (3.45)

n (@ qY)n (4% 4%

n=

Po=01-q¢q—@ =" NP1+ (q+¢ =+ ¢" ) Poa+¢*Pos,
Po=1, P =1—q, Po=1-q+2¢+¢" (3.46)

Recently, McLaughlin et al. and Bowman et al. found two new Rogers-Ramanujan
type identities in [12] and [6], respectively.

An identity (McLaughlin et al. [12, Eq. (2.5)]):

f: (D)™ @%)ag™ ™" (0"4") (@ 0% (3.47)
—~ (=4 ¢)n+1(0% ¢ (40*)0(@®; 4*)oo(q* ¢*) oo
n=0
An identity (Bowman et al. [6, Thm. 2.7]):
i ¢4 )nq"2+2" _ (00" ) (36D (3.48)
- (0" 4")n (4% ¢*) o
We can see that (3.47) and (3.48) are partners to (3.45). Therefore, we have
Qn=01-q-¢ =" )Qua+(¢+¢— ¢ +¢")Qna2+¢Qns,
Qo =0, Q1=17 Qe=1-q—¢, (3.49)
Ri=(1-q¢-¢ ¢ Ru1 +(¢+ ¢~ ¢+ " )Rz + ¢°Roos,
Ro—l Rl 1 R2—1—q, (350)

where P,, @, and R,, converge to the right hand sides of (3.45), (3.47), and (3.48),
respectively. We point out that the initial conditions for @), and R,, are obtained in
the following analysis.

Now we consider the following determinant:

1—qg—q¢*—2q¢ q+q¢*— ¢+ z2¢* ¢
-1 l—g—q¢*—2¢* g+ - +z2¢* ¢
F(Z):Z -1 3

l—qg—¢®—2¢° g+ - +2¢° ¢
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Expanding the determinant with respect to the first column, we get
F(z2) = (1= q— ¢~ 2q)F(2¢°) + (¢ + ¢ — ¢’ + 2¢*)F(2q") + ¢’ F(2¢°).
Setting N
F(z) = Z a,z",
n=0

we get, upon comparing coefficients,

. —(1— g™ g ! e BV @@ (1 + (1 ),
T =)t (I +gt) (=@ @*)ns1(a%; ¢ (1 + ¢*12)
Since ag = Wluq?)’ we have

n=0
Thus we get
(=1 (g; ¢*)ug™ " ) 2 ) s
=F(@™)+q F(¢g"™), 3.51

; (=4 ¢*)ns1(q* q*)n (@™ ( ) (3.51)
o (D" (@ ) ag m m m
> = P lg 7" =F(@®™) + (@ + QF (@) + CF(™). (3.52)
n=0 ! n ? n

On the other hand, F'(z) is the limit of the finite determinants

l—q-—q®*—2q¢ q+¢* -3+ 2¢? 3

-1 1-qg—¢>-2¢ q+¢®> - +2¢* o

Dy (z) :=

—1 1— q-— q2 _ Zq2n73 q+ q2 _ q3 + Zq2n72

-1 1_q_q2_zq2n71

Expanding this determinant with respect to the last row, we get

Dp(2) = (1=q— ¢ —2¢°"" ) Dp1(2) + (¢ + ¢ — ¢ + 2¢°" ) Dyp2(2) + ¢*Dy—3(2),
D_1(2) =0, Dy(z) =1, Di(2) =1—q—¢* — zq.

Then we have
Dn—m(q2m) = (1_q_q2_q2n_1)Dn—m—1(q2m)+(Q+q2_q3+q2n_2)Dn—m—2(q2m)+q3Dn—m—3(q2m)-

Now we calculate the initial conditions of @,, and R, in (3.49) and (3.50). According
to (3.51) and (3.52), we have

Qe = F(¢*) + ¢°F(q"),
R =F(¢®) + (@ + Q) F(¢") + ¢ F(¢°).
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Due to lim D,_,,(¢*™) = F(¢*™), we have

o
R

Dn—l(qz) + qun—2(q4>7
Dy-1(¢*) + (¢ + @) Du-2(q") + ¢*Dy—3(d°).
Therefore, we get
Q=0 Q=1 Q:=1-q-¢"
Ry=1, Ri=1, Ro=1—¢".
Since (Dy—m(@*™))ns (Pa)n, (Qn)n, and (R,), satisfy the same recursion, we set
Dn—m(q2m) = APy F 11 Qr + Vi Ry
Using the initial conditions D_;(¢*™) = 0, Do(¢*™) = 1, and D (¢*™) =1 —q¢— ¢* —

¢>™*1 we have
0 CQm—l Rm—l
1 Qm Rn
= 1—q-— q2 - q2m+1 Qm+1 R
" Pm—l Qm—l Rm—l ’
Poiyi Qi1 R
Pm—l 0 Rm—l
P, 1 Ry,
Png 1—q— q2 - q2m+1 R
Hm = )
Pm—l CQm—l Rm—l
Prii Qmy1 Rms
Pm—l Qm—l O
P,  Qn 1
Lo Bt Qua 1—g—d"— ¢
" Pm—l Qm—l Rm—l 7
Poiyi Quir R
where

Prn-1 Qm-1 Rm—
Py, Qm Ry, = _q3m—1(1 + Q)a
P m+1 Qm—i—l Rm—i—l
which can be proved by induction on m. Therefore, we have simpler forms for A, fin,
and v, as follows:

0 Qm—Q Rm—2

0 Qm—l Rm—l
L_ 1 Qu R,
e
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Pm—2 0 Rm—2
Pm—l 0 Rm—l
Pm 1 m
/J“m - q3m_4(1 + q) 9
Pm—2 Qm—2 0
Pm—l Qm—l 0
P Qn 1
S ()
According to (3.41) and (3.42), by setting
Am = (_1)mqm()\m + qz)‘m-‘rl)v Em = )\m + (q2 + q))\m—I—l + q3)\m+2>
By = (=1)"q"™ (ttm + ¢ fim+1),  and Fon = i + (@ + Q) ptmir + ¢ pimea,
Cm = (_1>mqm(ym + q2ym+1)7 Gm = Vpy + (q2 + Q)Vm—l—l + q3Vm+27
we have
© 2 n2+4+2mn
Z ( q;q )n;—lq _ (_1)mq_mAmPoo 4 (—1)mq_mBono + (_1)mq_mCmRom
=0 (4 @*)2n+1
L2 n2+4+2mn
—~ (¢
Since

(_1)m—1 1 QQm—Q qu—Z
=——-|0 Qm—l Rm—l )
2m—3
q (1+4q) 1 O R,,

by calculating A,,_1, A,_2, A,n_3 with the same last columns in the determinants as
A, we find a linear equation

A

Ap =0+ A+ (P + A2 — A
Using the initial conditions of P,, @,,, and R,,, we have
Ao=1, A1 =0, Ay, =0.
Proceeding in the same way, we get the recursions of B,,, C,,, E.,, F,, and G,,.

Therefore, we obtain (3.43) and (3.44). |

The identity (3.47) is a special case of (3.43), and the identities (3.45) and (3.48)
are the special cases of (3.44).
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