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The family of planted plane trees (trees for short) B

is defined by the formal equation.

B=.+ . +
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from which it follows that the generating function B(z) of

trees satisfies B=z/(1-B) and is given by

_ 1-/1-42z n __ 1 ,_,yne1/2y _ 1,2n-2
B(z) = —5—2% ; [2"]B=-35 (-0)°('[%) = (7).
[zn]f denotes, as usual, the coefficient. of zD in the

series f.

The average height H; (i.e. maximal number of nodes in a
chain connecting the root and a leaf) of trees of size n,
where all trees with n nodes are assumed to be equally li-

kely, satisfies

B, = /- 5+ 0/

n

" This has been derived in the pioneering paper {1].

We give here an alternative derivation which has the ad-
a-Lternat gelfivatl e ad

vantage that the coefficients in the asymptotic series for

h_  can be computed more easily. To illustrate this, we
- _  ——

compute two further terms (one appears already in [5],[6]).

The method is based on a[égmplex variable approacﬁlwhich is
explained in more detail in a forthcoming paper of Flajolet and
the author about register allocation problems [3]. Here, we
just give the computational steps; a rigorous derivation

can be made "4 la 0Odlyzko" ([2],[7]) or by a Darboux-type
argument where a generating function £(z) has a singularity
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p on its circle of convergence and behaves like
1/2

£(z) = f1(z).1og(1-§) + fz(z).(1-§) + £4(2)
with £, fz, £, analytic in a larger area [4]. '

Such a local expansion can then be translated into
an expansion of the Taylor coefficients of f(z).

H; is given by

[z"] E(2)

R
[z"] B(z)

n

where E(z) is the generating function of the sum of heights

of all trees with n nodes. Using the substitution [1]

z ='——JL—§ -— u = %%% with r = /1-4z,
(1+u)

the singularity of z=1/4 turns into u=1. So we want to know
about a local expansion of E(z) about u=1. It is convenient

to set u=e t, where t tends to 0. It is known [1] that

_ 1=u k
E(z) = 17 ° kZ] d(k) u ’

where d(k) is the number of divisors of k. Now

1-u _ 1-e% e -2+ 36 4 ...
+u 1+e” ¢ 2 -t + £2/2 + ...
_t_£,
— 2 4 U ) ’

so that we can turn to the other factor of E(z), which we

call

v(e) = ] d(k) e T |

k>1

The Mellin transform (see [4]) of V(t) is readily derived
to be

v¥(s) = ;2(5) r(s) ;

the Mellin inversion formula tells us
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2+ie

vit) = 211 I t2(s) r(s) t~

S ds .

2-ie

By shifting the line of integration to the left as far as
we please and taking the residues into account, we obtain

an asymptotic series for V(t):
There is a double polefat s=>; the residue is
..

y _ logt
t t :

There are simple poles at(g;zg> RLGNO ; the residues are
—_—

2 _ k

Brer . D7 4
—, t '
(k+1) k!
Bi denoting Bernoulli numbers. Thus
BZ t2j-1
R e R L
jz1  (23) (23=-1)1
Hence
3
[£_ ¢t y _logt 1 _ _t ‘
E(z)'\‘lz 24+ooo t t +4 m+ e o 0
2 2 3
= Y _logt ¢t t ty  t logt _t .
2 2 8 288 24 24 9
Now
t = - log =L = 2r+2r—3+
- 937 T 3 e !
yielding
2 3 2 2
y_ 21 L r r . _I&
E(z) v 53 -3 1092r -3 5 +3+33 - 53~ 33
2 3
+ L lgng _ §; + ...
= K, - 7 log(1-4z) + -} /T=Tz + K, . (1-4z2)

+'$§(1-4z) log(1-4z) + O.(1—42)3/2 +
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To get [(z"]E(z) we have to find (zn]log(1-4z) ' [zn]/1—4z

and so on:

n 1 4% 1 n,/2 1.4
(z7]E(z) v o+ OO0 + gy v O F
Now
(172 -1 (-1)? (2n)
n 2n-1 4n n
and
2n 4" 1
(n) fﬂ_ﬁ.(1 §E+"°> ,
thus
n+1 .
(V3. LD 14 5= + )1 1——1—+...>
n 2n 2n /7n 8n
n+1
= =U ( 1+ =+ ... ) .
2'/;1132 8n
This gives
. z ]JE(2) z" E(z)
n n T 1,_,,n
[z71B(2) 5(-4) (L)
_ 14" 2 3/2,,_3 _
= 4—1:1-41,1211’1'1 (1 —8-ﬁ+”') >
n
1 4 2 3/2 o)
+ g3 —(1+..0) nz/?n (14..0) + =+ ...
n 4
- 3/ _ 1 l/x o}
= J/wn 8¢c: 5+ 3Vc; A=
_ - 1 _ 1 /n Y
= J/mn 5 iV t oo ...

Remark that the nature of the expansion of E(z) tells us,
that the asymptotic series for H; is_in powers of 1//n .
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On the register function of a binary tree 259

1 -1 v
~?1"2-—-Cl( z)logt (a=2)
) Jog
1 1 -

Hence
N(z)~3{(-Dlogyt~ —log,e.

Theorem 5. The average number of nodes “‘above’ the node which first equals the
register value is asymptotic 1o

N

o2V " A g ol 09 b 40 I

7. Epilogue

From the explicit formulae for the generating functions mentioned in the intro-
" duction we find for instance

S,+1(2)=(B(z)—1)”R(2).

We will sketch a simple combinatorial argument for that: Take a tree with register
function p and consider its unique largest subtree in the forest of critical nodes.
This tree is a complete binary tree with 2% leaves. If we replace each leaf by an
arbitrary nonempty tree (counted by B(z)—1), we thereby obtain a tree with
strictly larger register function. This mapping is injective; it is surjective as well.
So we have a bijection and therefore the announced formula. (The inverse map-
ping could be described in a clumsy way by cutting down a tree with register
function >p in a certain sense of maximality, yielding the 2° nonempty trees
and a tree with register function p.)

We will now prove the explicit formulae starting from our just established
equality. This is therefore a second easy derivation of the explicit formulae.
(The first one is due to P. Kirschenhofer and H. Prodinger, see [12]). We have

-1
Sp+1=u2’R, and Sp=u2’ Rp—l ,

taking differences we see:

2P _ 2p
R,=u®" 'R,_,—u”R,
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