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Abstract. For Dyck paths (nonnegative symmetric) random walks, the location
of the first maximum within the first sojourn is studied. Generating functions and
explicit resp. asymptotic expressions for the average are derived. Related parameters
are also discussed.

1. Introduction

In the recent paper [8], the distribution of the time at which a Brownian motion is
maximal before its first-passage time was studied.

We undertake a related study, by investigating the discrete cousins, namely Dyck
paths (nonnegative lattice paths, returning to the x-axis). These celebrated combina-
torial objects, enumerated by Catalan numbers 1

N+1

(
2N
N

)
, when their length is 2N , are

known by many names, including also Dyck words, nonnegative symmetric random
walks, etc. They are also important in Computer Science, since they code planar trees
(and binary trees), see e.g. [1].

We find an explicit form of the generating function F (z, u), where the coefficient of
znuk is the number of Dyck paths of length n such that the first maximum within the
first sojourn occurs at time (=step) k. From it, we compute the expectation explicitly
and asymptotically. It is roughly 1/4 of the length of the walk.

We also compute the average height of the first sojourn, explicitly and asymptotically.
(The average height of the whole path has been known for a long time.)

For reason of comparison, we also investigate the location of the first maximum of
the whole path, which is roughly at 1/2 of the length of the walk.

In a final section, we show how to extend these results from the first sojourn to the
r-th sojourn. The parameters here are based on assuming all Dyck paths with at least
r sojourns to be equally likely. Most of the old computations can be used and only
have to be adapted slightly.

2. Generating functions

We study the parameter position of the first maximum during the first sojourn of a
Dyck path of length n, which we denote by R. Since this parameter makes no sense for
the empty path, we assume that n ≥ 1.
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Lemma 1. The generating function F (z, u) where z marks the length of the Dyck path
and u the parameter R, is given by

F (z, u) = C(z)
√

1− 4z2
√

1− 4z2u2
∑
h≥1

z2huh(
λh

1(zu)− λh
2(zu)

)(
λh+1

1 (z)− λh+1
2 (z)

) ,
where

C(z) =
1−

√
1− 4z2

2z2
, λ1,2(z) =

1±
√

1− 4z2

2
.

Proof. Let ϕh,i(z) be the generating function of paths of height ≤ h, ending at level
i. We are in particular interested in Ch(z) = ϕh,h(z); such a path clearly has height
= h. The following system of equations is easy to obtain (see, e.g., [5] for similar
calculations):

(1)


1 −z
−z 1 −z

−z 1 −z
. . .

−z 1




ϕh,0(z)
ϕh,1(z)
ϕh,2(z)

...
ϕh,h(z)

 =


1
0
0
...
0


Solving the system with Cramer’s rule produces the form

Ch(z) =
zh
√

1− 4z2

λh+2
1 (z)− λh+2

2 (z)
.

For the rest of the proof, we consider the decomposition according the the first occur-
rence of the height h of the first sojourn (for this part, z is replaced by zu, to count
the position where this happens)

F (z, u) =
∑
h≥2

zuCh−2(zu)zuCh−1(z)z · C(z) + z2uC(z),

which is equivalent to the announced statement. �

Theorem 1. The average value RN of the parameter R, assuming that all bN =
1

N+1

(
2N
N

)
Dyck paths of length 2N are equally likely, is given by

RN =
1

bN

(
−4N+2

(
2N

N

)
−
∑
k≥1

d(k)

(
2N + 1

N − k

)
+2
∑
k≥1

k d(k)

[(
2N

N − k

)
−
(

2N

N − 1− k

)])
,

where d(k) denotes the number of (positive) divisors of the integer k.

Proof. We differentiate the function F (z, u) w.r.t. u, followed by u := 1, which is
(apart from normalization) the generating function of the averages RN :

G(z) :=
∂

∂u
F (z, u)

∣∣∣
u=1

= −4z2C(z)
∑
h≥1

z2h

(λh
1(z)− λh

2(z))(λh+1
1 (z)− λh+1

2 (z))

+ C(z)(1− 4z2)
∑
h≥1

hz2h

(λh
1(z)− λh

2(z))(λh+1
1 (z)− λh+1

2 (z))
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+ C(z)
√

1− 4z2
∑
h≥1

2hz2h+2(λh−1
1 (z) + λh−1

2 (z))

(λh
1(z)− λh

2(z))2(λh+1
1 (z)− λh+1

2 (z))
.

With the substitution z = v/(1 + v2), this expression becomes nicer:

G(z) = −4v
∑
h≥1

v2h+1

(1− v2h)(1− v2h+2)
+ (1− v2)2

∑
h≥1

hv2h

(1− v2h)(1− v2h+2)

+ (1− v2)
∑
h≥1

2hv2h+2(1 + v2h−2)

(1− v2h)2(1− v2h+2)

= − 4v4

(1− v2)2
− (1 + v2)2

1− v2

∑
h≥1

v2h

1− v2h
+ 2(1 + v2)

∑
h≥1

hv2h

(1− v2h)2
.

The last step was done by partial decomposition and a few rearrangements.
Now note that ∑

h≥1

v2h

1− v2h
=
∑
k≥1

d(k)v2k

and ∑
h≥1

hv2h

(1− v2h)2
=
∑
k≥1

k d(k)v2k.

To read off coefficients, we observe that

[zn]G(z) = [vn](1− v2)(1 + v2)n−1G(z(v));

this can be justified either by the Lagrange inversion formula or formal residue calculus.
Now, since we have contributions only for even n = 2N , we can continue:

[zn]G(z) = [vn](1− v2)(1 + v2)n−1G(z(v))

= [vN ](1 + v)2N−1

(
− 4v2

1− v
− (1 + v)2

∑
h≥1

vh

1− vh
+ 2(1− v2)

∑
h≥1

hvh

(1− vh)2

)

= −4
N−2∑
k=0

(
2N − 1

k

)
−
∑
k≥1

d(k)

(
2N + 1

N − k

)
+ 2

∑
k≥1

k d(k)

[(
2N

N − k

)
−
(

2N

N − 1− k

)]
.

The final formula follows from simplifying the first sum. �

3. Asymptotics

In the paper [1] we find the procedure how to compute asymptotics of such sums.
(See also [3].)

We use the following approximation

−
(
2N+1
N−k

)
+ 2k

(
2N

N−k

)
− 2k

(
2N

N−1−k

)(
2N
N

)
∼ exp(−x2)

(
− 2 + 4x2 +

1√
N

(4x− 4x3) +
1

N
(−9x2 + 1 +

19

3
x4 − 2

3
x6)
)
,
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where x = k/
√

n, and it holds for |k| ≤ n
1
2
+ε, and for other values of k, the expression

is negligible (exponentially small). Maple could produce this expansion, and more
terms would be available. In [7], a procedure is described how to obtain such an
approximation efficiently.

A key ingredient to the asymptotics is now the sum

S :=
∑
k≥1

d(k)e−k2/n
(
− 2 + 4

k2

n
+ (4

k

N
− 4

k3

N2
) +

1

N
(. . . )

)
.

This can be attacked with the Mellin transform. Writing again x = 1/
√

N , it
becomes a harmonic sum in the notation of [2];

S∗ = ζ2(s)

(
(s− 1)Γ

(s

2

)
+ further terms

)
.

(Note that
∑

k≥1 d(k)k−s = ζ2(s).)

The asymptotics of S can be recovered by computing residues of S∗x−s (at s = 1
and s = 0):

S ∼
√

π

x
− 1

2
+ further terms.

The final asymptotic formula for the average RN of the parameter R follows from this
by multiplying by (N + 1), and taking care of the first two explicit terms, for which
Stirling’s formula applies. Most of this can be done by Maple. The final result is

Theorem 2. The average value RN of the parameter R when considering all Dyck
paths of lengths 2N to be equally likely, is given by

RN ∼ N

2
−
√

πN

6
− 1

12
log N +

10

9
− γ

4
,

with more terms being available if necessary.

So, roughly, we expect the parameter to be about 1/4 of the length of the Dyck path.
Higher moments could also be computed, by higher derivatives of F (z, u), but we

did not do it, because the expressions become complicated.

4. The height of the first sojourn

The height of Dyck paths has been studied for some 35 years: De Bruijn, Knuth and
Rice [1] showed that the average height is asymptotic to

√
πN − 3

2
(it is one less than

the height of the corresponding planar tree).
However, it does not seem that the height of the first sojourn has been studied.

Thus, we briefly address this here. Let Ah(z) be the generating function of Dyck words
of height ≤ h, and Bh(z) be the generating function of Dyck words where the first
sojourn has height ≤ h. Then, by the fundamental decomposition of Dyck words w.r.t.
the first return to the origin,

Bh(z) = z2Ah−1C(z).
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Now, it is known (and easy to derive via the system (1)) that

Ah(z) =
λh+1

1 (z)− λh+1
2 (z)

λh+2
1 (z)− λh+2

2 (z)
.

Consequently,

Bh(z) = v2 1− v2h

1− v2h+2
,

again with the substitution z = v/(1 + v2). The generating function of Dyck words
where the height of the first sojourn is > h, is then

C(z)− 1−Bh(z) = v2(1− v2)
v2h

1− v2h+2
.

The generating function of the averages (apart from normalization by bN) is obtained
by summing this up over h ≥ 0, viz.

(1− v2)
∑
h≥1

v2h

1− v2h
= (1− v2)

∑
k≥1

d(k)v2k.

Now we must look at the coefficient of z2N :

[z2N ](1− v2)
∑
h≥1

v2h

1− v2h
= [v2N ](1− v2)(1 + v2)2N−1(1− v2)

∑
k≥1

d(k)v2k

= [vN ](1− v)2(1 + v)2N−1
∑
k≥1

d(k)vk

=
∑
k≥1

d(k)

[(
2N − 1

N − k

)
− 2

(
2N − 1

N − 1− k

)
+

(
2N − 1

N − 2− k

)]
.

Theorem 3. The average height of the first sojourn of a Dyck path of length 2N is
given by

1

bN

∑
k≥1

d(k)

[(
2N − 1

N − k

)
− 2

(
2N − 1

N − 1− k

)
+

(
2N − 1

N − 2− k

)]
.

A similar computation as before evaluates this asymptotically:

Theorem 4. The average height of the first sojourn of a Dyck path of length 2N is
asymptotic to

1

2

√
πN +

1

4
log N +

3

4
(γ − 1).

It is interesting to note that in the average height of the Dyck path, no such loga-
rithmic term occurs.



6 H. PRODINGER

5. The location of the first maximum

For reasons of comparison, it is also interesting to study the location of the first max-
imum of the whole path (not only the first sojourn). The computations are somewhat
similar.

F (z, u) =
∑
h≥1

Ch−1(zu)zuCh(z)

=
√

1− 4z2
√

1− 4z2u2
∑
h≥1

z2huh

(λh+1
1 (zu)− λh+1

2 (zu))(λh+2
1 (zu)− λh+2

2 (zu))
.

We compute again the average, by differentiating this function:

G(z) = −4z2
∑
h≥1

z2h

(λh+1
1 (z)− λh+1

2 (z))(λh+2
1 (z)− λh+2

2 (z))

+ (1− 4z2)
∑
h≥1

hz2h

(λh+1
1 (z)− λh+1

2 (z))(λh+2
1 (z)− λh+2

2 (z))

+ 2z2
√

1− 4z2
∑
h≥1

(h + 1)z2h(λh
1(z) + λh

2(z))

(λh+1
1 (z)− λh+1

2 (z))2(λh+2
1 (z)− λh+2

2 (z))

= −4(1 + v2)
∑
h≥2

v2h

(1− v2h)(1− v2h+2)

+ (1− v2)2(1 + v2)
∑
h≥1

hv2h

(1− v2h+2)(1− v2h+4)

+ 2(1− v4)
∑
h≥2

hv2h(1 + v2h−2)

(1− v2h)2(1− v2h+2)

= −(1 + v2)3

(1− v2)2
− (1 + v2)3

v2(1− v2)

∑
h≥1

v2h

1− v2h
+

2(1 + v2)2

v2

∑
h≥1

hv2h

(1− v2h)2
.

And we read off coefficients again:

[zn]G(z) = [vn](1− v2)(1 + v2)n−1G(z(v))

= −[vN ]
(1 + v)2N+2

1− v
− [vN+1](1 + v)2N+2

∑
h≥1

vh

1− vh

+ 2[vN+1](1− v)(1 + v)2N+1
∑
h≥1

hvh

(1− vh)2

= −
N∑

k=0

(
2N + 2

k

)
− [vN+1](1 + v)2N+2

∑
k≥1

d(k)vk



LOCATION OF MAXIMUM IN A DYCK PATH 7

+ 2[vN+1](1− v)(1 + v)2N+1
∑
k≥1

kd(k)vk

= −22N+1 +

(
2N + 1

N

)
−
∑
k≥1

d(k)

(
2N + 2

N + 1− k

)
+ 2

∑
k≥1

kd(k)

[(
2N + 1

N + 1− k

)
−
(

2N + 1

N − k

)]
.

Theorem 5. The average location of the first maximum, assuming that all bN =
1

N+1

(
2N
N

)
Dyck paths of length 2N are equally likely, is given by

1

bN

(
−22N+1+

(
2N + 1

N

)
−
∑
k≥1

d(k)

(
2N + 2

N + 1− k

)
+2
∑
k≥1

kd(k)

[(
2N + 1

N + 1− k

)
−
(

2N + 1

N − k

)])
.

The asymptotic evaluation is exactly as before, with the result:

Theorem 6. The average location of the first maximum, assuming that all bN =
1

N+1

(
2N
N

)
Dyck paths of length 2N are equally likely, is asymptotic to

N − 1

3

√
πN +

1

2
.

6. The general case

We don’t have to stop here. Indeed, we can consider the height (location and value)
within the r-th sojourn. The expected number of sojourns (=degree of the root of
the associated planar tree) is just 2. Kemp has analyzed the height of trees with root
degree exactly r, see [4, 6].

We consider Dyck paths of length n which have ≥ r sojourns, where r is a para-
meter. The generating function of them is (zC(z)z)rC(z) = z2rCr+1(z). A standard
application of the Lagrange inversion formula enumerates the paths:

r + 1

N + 1

(
2N − r

N

)
.

Asymptotically, a proportion of r+1
2r of all paths has ≥ r sojourns.

Now, for the position of the first maximum within the r-th sojourn, we have to
consider

Fr(z, u) = z2(r−1)u2(r−1)Cr−1(zu)F (z, u).

For the average, we compute

Gr(z) = 2(r − 1)z2(r−1)Cr−1(z)F (z, 1)

+ z2(r−1)(r − 1)Cr−2(z)zC ′(z)F (z, 1)

+ z2(r−1)Cr−1(z)G(z)

= (r − 1)
(
2 +

zC ′(z)

C(z)

)
z2rCr+1(z) + z2(r−1)Cr−1(z)G(z)
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=
2(r − 1)v2r

(1− v2)(1 + v2)r+1

+
v2(r−1)

(1 + v2)r−1

[
− 4v4

(1− v2)2
− (1 + v2)2

1− v2

∑
h≥1

v2h

1− v2h
+ 2(1 + v2)

∑
h≥1

hv2h

(1− v2h)2

]

=
2(r − 1)v2r

(1− v2)(1 + v2)r+1
− 4v2(r+1)

(1− v2)2(1 + v2)r−1

− v2(r−1)

(1− v2)(1 + v2)r−3

∑
h≥1

v2h

1− v2h
+

2v2(r−1)

(1 + v2)r−2

∑
h≥1

hv2h

(1− v2h)2
.

And thus

[z2N ]G(z) = 2(r − 1)

(
2N − r − 2

N − r

)
− 4

N−r−1∑
k=1

(
2N − r

k

)
−
∑
k≥1

d(k)

(
2N − r + 2

N − r + 1− k

)
+ 2

∑
k≥1

k d(k)

[(
2N − r + 1

N − r + 1− k

)
−
(

2N − r + 1

N − r − k

)]
.

Note that
N−r−1∑

k=1

(
2N − r

k

)
=

1

2

(
22N−r −

N∑
k=N−r

(
2N − r

k

))
.

And we have

−
(

2N−r+2
N−r+1−k

)
+ 2k

(
2N−r+1

N−r+1−k

)
− 2k

(
2N−r+1
N−r−k

)(
2N−r

N

) ∼ e−x2

(
4(−1 + 2x2)

+
8r(x− x3)√

N
+

2− 6(r2 − r + 3)x2 + (4r2 − 4r + 38
3
)x4 − 4

3
x6

N

)
Eventually, the same procedure as before produces the asymptotic formula for the

position of the first maximum within the r-th sojourn:

N

2
−

√
πN

3(r + 1)
.

And finally we will consider the height of the r-th sojourn. We must multiply the

old Bh(z) function by (z2C(z))r−1, or by v2(r−1)

(1+v2)2(r−1) .

The generating function of paths where the maximum in the r-th sojourn is > h, is
given by

v2r(1− v2)

(1 + v2)r−1

v2h

1− v2h+2
.
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And for the expectation, we must consider

v2(r−1)(1− v2)

(1 + v2)r−1

∑
h≥1

v2h

1− v2h
.

Apart from normalization, we look at∑
k≥1

d(k)

[(
2N − r

N + 1− r − k

)
− 2

(
2N − 1

N − r − k

)
+

(
2N − 1

N − 1− r − k

)]
.

We approximate again:(
2N−r

N+1−r−k

)
− 2
(

2N−1
N−r−k

)
+
(

2N−1
N−1−r−k

)(
2N−r

N

) ∼ 1

N
e−k2/N

(
− 2 + 4

k2

N
+ further terms

)
.

Eventually, the average evaluates asymptotically to
√

πN

r + 1
+

r

2(r + 1)
log N − 2r + 1

2(r + 1)
+

3rγ

2(r + 1)
.

7. Conclusion

We leave limiting distributions, higher moments and asymmetric random walks to
further research.
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