A GENERALIZED FILBERT MATRIX
EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. A generalized Filbert matrix is introduced, sharing properties of the Hilbert
matrix and Fibonacci numbers. Explicit formulee are derived for the LU-decomposition,
their inverses, and the Cholesky factorization. The approach is to use g-analysis and to
leave the justification of the necessary identities to the g-version of Zeilberger’s celebrated
algorithm.

1. INTRODUCTION

The Filbert matrix H, = (hz-j)?jzl is defined by h;; = ﬁ as an analogue of the
Hilbert matrix where F}, is the nth Fibonacci number. It has been defined and studied by
Richardson [1].

In this paper we will study the generalized matrix with entries ——, where r > —1 is an

F;
integer parameter. The size of the matrix does not really matter, ggd we can think about
an infinite matrix JF and restrict it whenever necessary to the first n rows resp. columns
and write JF,,.

Our approach will be as follows. We will use the Binet form

a—( 1—gq

with ¢ = B/ = —a™?, so that a = i/,/g. All the identities we are going to derive hold
for general ¢, and results about Fibonacci numbers come out as corollaries for the special
choice of q.

Throughout this paper we will use the following notations: (z;q), = (1 — x)(1 —
zq) ... (1 —xq"') and the Gaussian g-binomial coefficients

m __ (@

k] (6@ @k
Furthermore, we will use Fibonomial coefficients

{n} B E . Fak

k Fy. . Fy

The link between the two notations is

{Z} = f(n=F) Bﬂ with ¢= —a 2
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We will obtain the LU-decomposition & = L - U:

Theorem 1. For 1 <d <n we have

n_1] {2d+r} [n+d+r]_1

n—d
Ln — =2 entd _1 n
a=q7i7=1) {d—l d d

and its Fibonacci corollary
n—1)(2d+7r) (n+d+r)""
L,g= .
’ d—1 d d
Theorem 2. For1l < d <n we have

ned—r—1_ o 2d+r—1]""'"Tn+d+r]'n 1—gq
U Y= ==t d trdsntd+r+1 —1 n+d+r
dn =4 ! (=1) d—1 d d|1= ¢

and its Fibonacci corollary

., 2d+r—1)""(n+d+r) " (n)] 1
o= U

We could also determine the inverses of the matrices L and U:
Theorem 3. For 1 <d <n we have

(n—d)? n+r|n+d—1+7r|{|[2n—-1+7r -1
L—IZ T'n-‘rd _1d
nd — 4 =1 d+r d—1 n—1

and its Fibonacci corollary
-1
[ (_1)(n+1)d+"<"2“>+d<d2“> n+r|n+d=1+7)[2n—-1+r ‘
v d+r d—1 n—1
Theorem 4. For 1 <d <n we have

n2 2 T 2 d - ]. - ]. 1 - n
Udi; — q2+d2+;1(d+r)nin+d1+r(_1)nd|: n;— T] {TL + p :::: 1 {Z - 11 - _QQ

and its Fibonacci corollary

n(nt1) , d(d—1) 2n—+r n+d+r—1 n—1
Ufl —(—1 —— 4+ === —dn—rn+r Fn
an = (=1)7 ’ n d+r d—1

As a consequence we can compute the determinant of &, since it is simply evaluated as
Uy U, (we only state the Fibonacci version):

ey o (2d 41— 1) " (2d +7) Tt 1
detF, = (1)~ 2 H{ i } { ; } iR

d=1

Theorem 5.



GENERALIZED FILBERT MATRIX 3

Now we determine the inverse of the matrix F. This time it depends on the dimension,
so we compute (F,)".

Theorem 6. For 1 <i,5 <n:

(gj’n)fl _ M%Hf(i+j+r)nii+j+r+l (_1)i+j+1

Y s [ [ty e

and its Fibonacci corollary

(f{),—.l:(_U@JF@M(iHHHT n+r+i [(n+r+jfn—1[n-1 Fj
o n n i— 1\ j—1) Frpiyy

We can also find the Cholesky decomposition F = € - €7 with a lower triangular matrix

C:
Theorem 7. Forn > d:

" -1
e (_1)nin+r+%1q%7TZ1+d(d;1>+% VA =@ 1 —q)[2n+r][2n+7r—1
’ 1 — g?ntr n—d n—1

and its Fibonacci corollary

en’d:(_1> n—d n—1

Notice that for odd r, even the Fibonacci version may contain complex numbers.

A1) | r(d+) Vi, {2n + r}{?n +r— 1}_1

F2n+7‘

2. PrROOFS

In order to show that indeed & = L - U, we need to show that for any m, n:

l—q
_ _ __—m-—n—r+1
Z Lm,dUd,n — I}im,n =« 1 — qm+n+r :
d
In rewritten form the formula to be proved reads
P(r—1)d—r _ d4(r+1)dy | 2T 20 4T

g(q q )[m alln g
(=)A= 2m 4 =1 [2n+r -1
N 1 — gmtntr m—1 n—1 '

Nowadays, such identities are a routine verification using the g¢-Zeilberger algorithm, as
described in the book [2].
For interest, we also state (as a corollary) the corresponding Fibonacci identity:

r(d—1) 2m~+r) [2n+r FopivFopir [2m+7r—1) [2n4+7—1
S (1) D By, _ Ponr P |
m—d n—d m—1 n—1

d Fm+n+r
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Now we move to the inverse matrices. Since L and L~! are lower triangular matrices,
we only need to look at the entries indexed by (m,n) with m > n:

> Lmalg,

n<d<m

B med g, vm |M 1 [2d 4| fmA+d+r -
- 3 e P
n<d<m

(n—d)?

% qTin—i_d(—l)n |:

1 [Qm—l—r—l

n—1

d+r\[n+d—1+7][2d=1+7]""
n-+r d—1

-1
:| 1m+n(_1>m+n

:1—q2m+“ m—1
m_d_, (n—d)? , 2m+r|n+d—-1+r||d—-1
D IR e R eV i | St |
n<d<m

The ¢-Zeilberger algorithm can evaluate the sum, and it is indeed [m = n], as predicted.
The argument for U - U~ is similar:

> UnaUg,

m<d<n
— <_1)m+nim+n —%+m2+rm—"72—rn 2m+r—1 o 2n+r—1] 1- q2n+r
N a m—1 n—1 1 — gntmtr
d(d+1) n+d+r—1|n+m-+r
% -1 d 5 —dn )
m;;n( )'a { d—m }{ n—d }

Again, the ¢-Zeilberger algorithm evaluates this to [m = n].
Now we turn to the inverse matrix:

((Stn>_137n>i7k = ii_k(—l)iquQ_k—(i+7“)n+r(1 _ qn)2 [n +7r+ Z} {n — 1:|

n 7 —1

UL G n+r+jjin—1 1
S R ]y M
; n J= 1 (1= g/t (1 = grtitd)

And the ¢-Zeilberger algorithm evaluates this again to [i = k].
The Cholesky verification goes like this:

min{m,n}
Z Gm,den,d
d=1
— (_1)m+n+7‘im+n+r+1qm+"ff’"*1 I—gq m+r—11"2m+r—11"
Q=gm)A - ) n—1 m—1

2m+r| |2n+r
d(d—1)4rd 2d+r

X E 1— .
y 1 (1=q >lm—d1{n—d}
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And again the ¢-Zeilberger algorithm evaluates this to be

1— q sm~4n+r—1 %
1— qm+n+r ’

as it should.
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