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Abstract. A generalized Filbert matrix from [1] is further generalized, introducing 3
additional parameters. Explicit formulæ are derived for the LU-decomposition, their
inverses, and the Cholesky factorization. The approach is to use q-analysis; the necessary
identities are clarified on 2 examples and can otherwise be left to automatic proofs (q-
Zeilberger algorithm).

1. Introduction

In [1], a generalized Filbert matrix with entries 1
Fi+j+r

, where r ≥ −1 is an integer

parameter, was studied (Fn is the n-th Fibonacci number). The size of the matrix does
not really matter, and we can think about an infinite matrix F and restrict it whenever
necessary to the first n rows resp. columns and write Fn. See [1] for historic remarks and
pointers to the earlier literature.

Throughout, we will use the Binet form

Fn =
αn − βn

α− β
= αn−1 1− qn

1− q
,

with q = β/α = −α−2, so that α = i/
√

q.
In the previous paper, explicit formulæ where given for:

• The LU-decomposition F = L · U .
• The inverse matrices L−1, U−1.
• The inverse of the matrix Fn.
• The Cholesky decomposition F = C · CT with a lower triangular matrix C.

All the identities hold for general q, and results about Fibonacci numbers come out as
corollaries for the special choice of q. Henceforth, we don’t mention Fibonacci numbers
any further.

In this paper, we generalize all this by introducing three extra parameters: x, y, and λ:

Fi,j :=
xiyj

Fλ(i+j)+r

.

The previous instances come out as the special cases x = y = λ = 1. (For the Cholesky
case, we have to naturally assume that x = y.)
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The main effort in obtaining these results is to guess the correct formulæ, which is doable
with some experience, patience, and a computer. The proofs are then routine, and in our
previous paper, we only mentioned that the q-Zeilberger algorithm can do it. Here, we
want to be a bit more explicit, for the convenience of the reader.

Throughout this paper we will use the following notations: (x; q)n = (1 − x)(1 −
xq) . . . (1− xqn−1) and the Gaussian q-binomial coefficients[

n

k

]
=

(q; q)n

(q; q)k(q; q)n−k

.

Sometimes, when the parameter q is understood, instead of (x; q)n, only (x)n is written.

2. Results

Theorem 1. The LU decomposition is given by

Ln,d = iλ(d−n)q
λ(n−d)

2
(qλ+r; qλ)2d(q

λ+r; qλ)n

(qλ+r; qλ)n+d(qλ+r; qλ)d

(qλ; qλ)n−1

(qλ; qλ)n−d(qλ; qλ)d−1

yn−d

and

Ud,n =
(qλ; qλ)d−1(q

λ+r; qλ)d(q
λ+r; qλ)n(qλ; qλ)n(1− q)

(qλ+r; qλ)2d−1(qλ+r, qλ)n+d(qλ; qλ)n−d(1− qλn)
xnyd

× q
λ(n−d)

2
+λd2+rd− r+1

2 iλ(n+d)+r+1(−1)λ(n+d)+r

for n ≥ d; for n < d, these numbers are 0.

Theorem 2. The inverse matrices are given by

L−1
n,d = qλ

(n−d)2

2 iλ(n+d)(−1)(λ+1)n+d (qλ+r; qλ)n+d−1(q
λ; qλ)n−1(q

λ+r; qλ)n

(qλ+r; qλ)d(qλ; qλ)n−d(qλ; qλ)d−1(qλ+r; qλ)2n−1

yn−d

and

U−1
d,n =

(qλ+r; qλ)2n(qλ+r; qλ)n+d−1

(qλ; qλ)d−1(qλ; qλ)n−d(qλ; qλ)n−1(qλ+r; qλ)n(qλ+r; qλ)d

1

1− q
x−dy−n

× q−
λn2

2
+λd2

2
+ r+1

2
−λdn−rniλ(n+d)+r−1(−1)n+d

for n ≥ d; for n < d, these numbers are 0.

Theorem 3. The inverse matrix:

(Fn)−1
i,j = q

λi2+λj2+r+1
2

−λ(i+j)n−rniλi+λj+r+1(−1)i+j+1 1

(1− qr+λi+λj)(1− q)
x−iy−j

× (qλ+r; qλ)n+i(q
λ+r; qλ)n+j

(qλ; qλ)i−1(qλ; qλ)n−i(qλ; qλ)j−1(qλ; qλ)n−j(qλ+r; qλ)i(qλ+r; qλ)j

.
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Theorem 4. The Cholesky decomposition is for x = y given by

Cn,d = (−1)niλn+r+ r+1
2 q

λn
2
− r+1

4
+

λd(d−1)
2

+ rd
2

√
(1− q2λd+r)(1− q)

(qλ; qλ)n−1(q
λ+r; qλ)n

(qλ; qλ)n−d(qλ+r; qλ)n+d

xn.

This holds for n ≥ d; otherwise, these numbers are 0.

3. How the prove the formulæ

Let us consider one typical case:∑
d

Lm,dL
−1
d,n =

∑
d

iλ(d−m)q
λ(m−d)

2
(qλ+r; qλ)2d(q

λ+r; qλ)m

(qλ+r; qλ)m+d(qλ+r; qλ)d

(qλ; qλ)m−1

(qλ; qλ)m−d(qλ; qλ)d−1

ym−d

× qλ
(n−d)2

2 iλ(n+d)(−1)(λ+1)d+n (qλ+r; qλ)n+d−1(q
λ; qλ)d−1(q

λ+r; qλ)d

(qλ+r; qλ)n(qλ; qλ)d−n(qλ; qλ)n−1(qλ+r; qλ)2d−1

yd−n

= q
λm
2

+λn2

2 ym−n(−1)niλ(n−m) (q
λ+r; qλ)m(qλ; qλ)m−1

(qλ; qλ)n−1(qλ+r; qλ)n

×
∑

d

q
λd2

2
−λd

2
−λdn (−1)d

(qλ+r; qλ)m+d

1− qr+2dλ

(qλ; qλ)m−d

(qλ+r; qλ)n+d−1

(qλ; qλ)d−n

.

It is clear that, since the matrices are of lower triangular type, we have to prove that the
expression is 0 for m > n. (For m = n, the entry is 1, which is not hard to see, since it is
only one term, not a sum.)

It is beneficial, for the evaluation of the sum, to switch to more convenient letters. First,
set Q = qλ and a = qr:

SUM =
∑

d

Q(d
2)−dn (−1)d

(aQ; Q)m+d

1− aQ2d

(Q; Q)m−d

(aQ; Q)n+d−1

(Q; Q)d−n

.

Now, we write q for Q and k for d:

SUM =
m∑

k=n

q(
k
2)−kn(−1)k (1− aq2k)(aq)n+k−1

(aq)m+k(q)m−k(q)k−n

.

Changing k to k + n (and introducing an irrelevant factor):

SUM =
m−n∑
k=0

q(
k
2)(−1)k (1− aq2k+2n)(aq)2n+k−1

(aq)m+n+k(q)m−n−k(q)k

.

Changing m to m + n (and introducing an irrelevant factor):

SUM =
m∑

k=0

q(
k
2)(−1)k 1− aq2k+2n

(aq2n+k)m+1

[
m

k

]
.

Eventually, we replace aq2n by b:

SUM =
m∑

k=0

q(
k
2)(−1)k 1− bq2k

(bqk)m+1

[
m

k

]
.
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We must show that this is 0 whenever m > 0. Now set

F (m, k) = q(
k
2)(−1)k 1− bq2k

(bqk)m+1

[
m

k

]
,

G(m, k) = q(
k+1
2 )(−1)k 1

(bqk+1)m

[
m− 1

k

]
,

then it is trivial to check that

F (m, k) = G(m, k)−G(m, k − 1);

this is the representation that the q-Zeilberger algorithm provides. Summing this over all
k gives the result 0, as the righthand side telescopes. Alternatively, one can notice that
the sum of interest is given by G(m, m), which evaluates to 0.

Let us consider another case:∑
m≤d≤n

Um,dU
−1
d,n =

∑
m≤d≤n

(qλ; qλ)m−1(q
λ+r; qλ)m(qλ+r; qλ)d(q

λ; qλ)d(1− q)

(qλ+r; qλ)2m−1(qλ+r, qλ)d+m(qλ; qλ)d−m(1− qλd)
xdym

× q
λ(d−m)

2
+λm2+rm− r+1

2 iλ(d+m)+r+1(−1)λ(d+m)+r

× (qλ+r; qλ)2n(qλ+r; qλ)n+d−1

(qλ; qλ)d−1(qλ; qλ)n−d(qλ; qλ)n−1(qλ+r; qλ)n(qλ+r; qλ)d

1

1− q
x−dy−n

× q−
λn2

2
+λd2

2
+ r+1

2
−λdn−rniλ(n+d)+r−1(−1)n+d

=
(qλ; qλ)m−1(q

λ+r; qλ)m(qλ+r; qλ)2n

(qλ+r; qλ)2m−1(qλ; qλ)n−1(qλ+r; qλ)n

ym−nq−
λm
2

+λm2+rm−λn2

2
−rniλ(m+n)(−1)λm+n

×
∑

m≤d≤n

(−1)dq
λd2

2
+λd

2
−λdn(qλ+r; qλ)n+d−1

(qλ+r; qλ)d+m(qλ; qλ)d−m(qλ; qλ)n−d

.

For the sum, let us write Q = qλ and a = qr:∑
m≤d≤n

(−1)dq
d2

2
+ d

2
−dn(aQ; Q)n+d−1

(aQ; Q)d+m(Q; Q)d−m(Q; Q)n−d

.

We must show that it is zero for m < n. Let us replace d by d+m, ignore irrelevant factors
and write q again for Q for convenience:∑

0≤d≤n−m

(−1)dq
d2

2
+ d

2
+dm−dn(aq)n+d+m−1

(aq)d+2m(q)d(q)n−d−m

.

Now replace n by n + m: ∑
0≤d≤n

(−1)dq
d2

2
+ d

2
−dn(aq)n+d+2m−1

(aq)d+2m(q)d(q)n−d

.
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Ignore irrelevant factors: ∑
0≤d≤n

(−1)dq
d2

2
+ d

2
−dn(aq1+d+2m)n−1

[
n

d

]
.

Now write b = aq1+2m and the more traditional k instead of d:
n∑

k=0

(−1)kq
k2

2
+ k

2
−kn(bqk)n−1

[
n

k

]
.

As before, call the term in the sum F (n, k). Then

F (n, k) = G(n, k)−G(n, k − 1),

with

G(n, k) = (−1)kq
k2

2
+ k

2
−kn(bqk)n

1

1− bqn−1

[
n− 1

k

]
.

Again, upon summing on k, we get 0, because of the telescoping property.
Other proofs follow the same pattern.
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