¢Ce0S

FIBONACCI NUMBERS OF GRAPHS: II

PETER KIRSCHENHOFER, HELMUT PRODINGER, and ROBERT F. TICHY
Technische Universitat Wien, GuBhausstrafe 27-29, A~-1040 Wien, Austria

(Submitted April 1982)

1. INTRODUCTION

In [9], the Fibonacci number f(G) of a (simple) graph G is introduced as
the total number of all Fibonacci subsets S of the vertex set V(@) of ¢, where
a Fibonacci subset § is a (possibly empty) subset of V(G) such that any two
vertices of S are not adjacent. In Graph Theory [6, p. 257] a Fibonacci sub-
set is called an independent set of vertices. From [9] we have the elementary
inequality

Foo. SF@ <27+ 1, (1.1)

where F, denotes the usual Fibonacci numbers with

Fo=F_ =1, F

n

=Fo1 HF s

and ¢ is a tree with 7 vertices. Furthermore, several problems are formulated
concerning the Fibonacci numbers of some special graphs. The present aim is
to derive a formula for Ff{T,(£)), where T,(f) is the full t-ary tree with
height n: [T,(¢) is the empty tree.]

1 vertex . height 1

t vertices .. .. height 2

t? vertices .. . height 3
t" % vertices ... e ... height n ~ 1

t"~1 vertices ... é{i 3 ... d{( e -.. height =

FIGURE 1

For ¢t = 1, one can see immediately that f(7,(#)) = F,,.,> so the interesting
cases are t » 2. In Section 2, for ¢ = 2, 3, 4, the asymptotic formula

F(T () ~ A) - k(Y (n > ) (1.2)
is proved, where A(¢) and k(t) denote constants (depending on *) with
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2VA=0 <o) <1< k(t) < 2V -1

In Section 3, it is proved that for ¢ 2 5 such an asymptotic formula does not
hold; we show that for ¢t > 5:

F(Tn () ~ B(E) + k(&)*”
2m+1 (1.3)
F(T, 1 () ~C() = k(@)
where B(t) > C(t) are constants depending on ¢ with
%12 B(t) = %ig c(t) = 1.

In Section 4, we establish an asymptotic formula for the average value S,
of the Fibonacci number of binary trees with »n vertices (where all such trees
are regarded equally likely). For the sake of brevity, we restrict our con-
siderations to the important case of binary trees; however, the methods would
even be applicable in the very general case of so-called "simply generated
families of trees'" introduced by Meir and Moon [8].

By a version of Darboux's method (see Bender's survey [1]), we derive
S, ~G = rn (n » ), (1.4)

where G =1, 12928... and » = 1, 63742... are numerical constants.

2. FIBONACCI NUMBERS OF #-ARY TREES (£ = 2, 3, L)

By a simple argument (compare [9]), the following recursion holds for the
Fibonacci number z,: = f(T,(t)),
Tyeq = XL+ 2t with xy = 1, x; = 2. (2.1)

We proceed as in [4] and put y, = log x,; by (2.1),

xiil
Ype1 = tY, + o, with o, = logl|l + (2.2)
xr,
Because of
xfil < (x$~1 + xfiz)t =zl
the estimate
0<a, <log?2 (2.3)

results. The solution of recursion (2.2) is given by

:LO :Ll :‘n—l
= tn — ——
Yo = <t * t? o A t" )

It is now convenient to extend the series in a; to infinity [because of (2.3)
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the series is convergent]:

Y= i | (2.4)

For the difference

. = = S n-1-1
rpr =Y, -y, = 2: t Lui’
i=n

we have
0<x <1982 (2.5)
Therefore, we obtain
x, =e "= k() (2.6)
where
k(t) = exp(i t_i’loci> (2.7)
=0

and 1 < k() < 2Y®-D py (2.3).
In the following, we investigate the factor e " of (2.6); we set
dn = x:/xn+1
and obtain the recursion

1 1
T Ty T2 (2:8)
n

from (2.1). It is useful to split up the sequence (g,) into two complementary
subsequences
(G,): = (q,,) = (Qgs Gus <)
(2.9)
W) = (Gopir) = (@15 g5 o02)
Lemma 1

The following inequalities hold for the subsequences (g,) and (u,) of (g,):

1) 941 2 In for allm =20, 1, 2, 3,
(11) Uy, < Uy for allm=20, 1, 2, 3,
(iii) Un 2 Gm for allm =20, 1, 2, 3, .

Proof: Let g,_, > g,; then 1 +¢qf_, > 1 +qf, 1/(1 + gf_,) <1/(1 + gb),

and so
1 + <~ 1 - )t
L+ An-2
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Applying (2.8), we have proved:
f g,_, > q,> then g, > q,,,- (2.10)

Because of g, > Gos (i) dis proved by induction; (ii) and (iii) follow by a
similar argument.
By Lemma 1, (g,) and (u,) are monotone sequences with the obvious bounds

1

5 < gy < up < 1. (2.11)

So the sequences (g,) and (u,) must be convergent to limits g and u (depending
on t). The following proposition shows that g = u in the cases ¢ = 2, 3, 4.

Proposition 1

For t = 2, 3, 4, the sequence (g,) 1is convergent to a limit w(¢), where

w(t) is the unique root of the equation witt 4w - 1 = 0 with %~< w(t) < 1.

Proof: By Lemma 1 we only have to show that (g,) and (u,) are convergent
to the same limit. For (g,) and (un,) the following system of recursions holds:

D

L gt
(2.12)

S S

m+1 l+u$,

Taking the limit m - o, we obtain
ye—=t g =—L1 uiml<g<uc<i. (2.13)
1+ gt 1+ ut 2

Let us start with the case t = 2. By (2.13), we have ug?=1 - u, gu?> =1 - g,

and therefore, u -~ u> = g - g°. Because the function x + x - xz® is strictly

decreasing in the interval [%3 l], u = g follows immediately.

In the case ¢t = 3, we derive in a similar way the relation u? - ud =
gz - g®. Since the function z + z? - 2% is strictly decreasing in the inter-
2 . .
val [33 l] and-% < g, = 0, 684..., we obtain u = g again.

3

Since the function x +» x° — x2* is strictly decreasing in the interval

E 1] and g,, = 0, 7500138... > 2, we obtain u = g in the case ¢ = 4, too.
So u = g in all considered cases; therefore, a limit w(¢) of (g,) exists
for ¢ =2, 3, 4, and w(¢) fulfills the equation

I
1 +wt’
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Since the function f(w) = w!** +w - 1 is strictly monotone in the interval

1 1
[E’ 1] and‘f<§> <0, f(1) > 0, there exists a unique root of this equation in
the interval [%, 1], which is the limit w(#) from above.

By (2.2) we derive

lim o, = log(l + w(z)?). (2.14)
N> o
Because of
1 > 1
rp = log(l +w()*)| < F " oy - Tog(l + w()’)] < 5 £ -
i=n -

[for all € > 0, n = n,(€)], the sequence (r,) is convergent; so
%_J;l'g e_r"= (]- + w(t)t)—l/(t—l) = w(t)l/(t—l) - (1 _ w(t))l/(tz‘l) (2.15)

results. Altogether we have established:

Theorem 1

Let T,(t) be the full t-ary tree (¢t = 2,3, or 4) with height n. Then, the
Fibonacci number f(7,(%)) fulfills the following asymptotic formula:

(T, (£)) ~ A(t) - k()Y (n + )

where A(t) = w(t)lﬂt'l) and k(t), defined by (2.7), are constants (only depend-
ing on t) bounded by

21/(1-1¢) <A() €1 < k(t) < 21/(t-—1);
w(t) is the unique root of w®*! +w -1 =0 with-%—< w(t) < 1.
Remark: The numerical values of w(t) are

w(2) = 0, 68233..., w(3) = 0, 72449..., and w(4) = 0, 75488...

3. FIBONACCI NUMBERS OF ¢-ARY TREES (¢ 2 5)

In this section we consider t-ary trees with ¢ 2 5. Let (g,), (un) be the
subsequences of (g,) defined by (2.9). (g,) and (usn) are convergent to limits
g and u, respectively (depending on ¢). We shall prove that g # u; therefore,
(q,,) has two accumulation points. For g, u the following system of equations

holds,
1 L (3.1)

u = s = s
1+ gt S R

and g = u if and only if u or g is the unique solution of
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wtt+w-1=0 (3.2)

in the interval [%3 ] . If (u', g') and (W"”, g") are two pairs fulfilling
(3.1) with u’<u", then g'>g". Let (U, g) denote the pair of solutions with

minimal g and maximal u.
Lemma 2

The subsequence (g,) of (g,) is convergent to the limit F and the subse-
quence (u,) to the limit Z.

Proof: First we show that g, < J implies u, > % and g,,, < 3.

Because of g, < J, we obtain 1 + gt <1 + g* = 1/4,andso u, > 4. From
U, > %, it follows that 1 + u} > 1 + u* = 1/7, hence g,,; < 7.

Using the fact that g, = %—< g, we obtain, by induction,

lim g < g and %Eﬁ Up 2 U.

m--co

By the definition of (%, ), it follows that

lim g, =g and lim u, = U,

m->co m- oo
and the Lemma is proved.
Lemma 3
Let ¢ 2 5 be a positive integer; then there exists a solution (u, g) of

the system (3.1) with
1 1 1
—2-<g<—2'+ft'.

Proof: System (3.1) is equivalent to the equation

g = Lo (3.3)

1+ —
(1 +g®)?

We consider the function

@19) =.__£L;t£ﬁ23__ -

gs
I+ (1 +gt?
and obtain ¢, 1 > 0; in the sequel, we show @ 1 +-lA < 0. For t =5o0r6,
t\ 72 t\2 ¢t

this inequality can be shown by direct computation:

05(45) = -0, 01502 and o, (%) = -0, 04306.
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Let us assume ¢ 2 7 in the sequel. By elementary manipulations, the inequal-
ity

1 -1l
1 2 t
1+
1+ (l +3))
2t
. . 1 1y2\-¢ 2t
is equivalent to 1+(1+<2+t>> >7‘;+20r
1 l)f t t+ 2
<1+(2+t)<t_2. (3.4)
2\ t/2
Because of <1 + —t—> < e, it is sufficient to prove
<1+gjt<t+2_ 3.5
2t t - 2 -5)
We have
e2\* o2t
(+5) <enl57)
and
2t
e t+ 2
exp(zt)<t_ 2fort>7.
So o, (-%— + %) <.0, and the Lemma is proved, because the continuous function @
1 1
has a root between 5 and 5 + =

Equation (3.3) is equivalent to
glgt + 1)t - (gt + 1)t + g = 0. (3.6)

The polynomial on the left-hand side of (3.6) is divisible by g®**+g - 1.
Because of (%)Hl +—2 - 1< 0 (for t 2 5), the unique solution w(t) of gt“ +
g -1 =0 1is contained in the interval [%, 1]. By Lemma 3, .we have found a
pair of solutions (1, g) with u # g such that + < g<2<w() <u< 1. We
denote by (u(t), g(#)), t = 5, the pair of solutions of (3.1) such that g(t)
is minimal and u(#) is maximal. Because of g(#) < % +% and u(t)= 1 + g(t)'t

for £ 2 5, we obtain
lim g(#) ==, lim u(t) = 1. (3.7
toew 2 oo

Altogether, we have proved:
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Theorem 2

Let T,(t) be the full t-ary tree (for ¢ 2 5) with height n. Then the Fi-
bonacci numbers fulfill the following asymptotic formulas, respectively:

F(T, (£)) ~ B(t) « k(&)™
F(Tomi1(B)) ~ CE) = K(B)E,

(GO )Y = (1 - w@)M N,

where

c(t)

B(#) = (g(®u@® )V D = (1 - gV Y,
and k(t), defined by (2.7), are constants (only depending on %¢) bounded by
V00 <o) < B(t) <1< k(t) < 2YE-1
g(t) is the minimal root and u(¢) the maximal root of
z(xt + 1)t - (xt + 1)t + x =0
in the interval [%3 l]; furthermore,

%im B(t) = %im c(t) = 1.

Remark: 1In [2], similar recurrences are treated by a slightly different
method. The recursion for (gq,) can be considered as a fixed-point problem and
our results can be derived in principal by studying this fixed-point problem.

L. THE AVERAGE FIBONACCI NUMBER OF BINARY TREES

The family B of all binary trees is defined by the following formal equa-
tion (O is the sumbol for a leaf and O for an internal node):

O

B = H (4.1)
D+B/\B 4.1

(this notation is due to Ph. Flajolet [3]). The generating function

B(z) = ), b,3"

n>0

of the numbers of binary trees with n internal nodes is given by

B(2) L1 -vl -4z Vzlz“*z (4.2)
and, therefore,
_ 1 2n
br = 5100 (4.3)
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For technical reasons, we consider the family B* of all binary trees with
leaves removed; B* fulfills

¥ = 0 + + + Q (4.4)

o o
5/* \B* g* \B*

Let By, be the family of binary trees ¢t with » internal nodes, and let

f(z) = 2 f,z" and g(3) = X g,3"

nx>l nx>1l

be generating functions of

f, = 3 card{S:S5 C V(TI); S a Fibonacci subset
TE€Bn not containing the root},
(4.5)
g, = > card{S:S C V(T); S a Fibonacci subset

TEB, containing the root}.

Obviously, the average value of the Fibonacci number of a binary tree with n
internal nodes is given by

hin
S, = 5. with h, = f, + 9,. (4.6)

The remainder of this paper is devoted to the asymptotic evaluation of S,. By
Stirling's approximation of the factorials, the well-known formula

1 2n., -3/2
bp ~— 2"n n > o 4.7
holds and we can restrict our attention to /,.

For the generating functions, we obtain

i

z+z(f+g) +a(f+g)+af+g?
(4.8)
2z + z2f + zf + zf?.

g

[The contributions of (4.8) correspond to the terms in (4.4).] Setting
y() =1+ f(z) +g(z),
we derive, by some elementary manipulations,
2% + (222 + 2)y? -y + (2 + 1) = 0. (4.9)

Now we want to apply Theorem 5 of [1]; for this purpose, we have to determine
the singularity p of y(z) nearest to the origin. (4.9) is an implicit repre-
sentation of y(z). Abbreviating the left-hand side of (4.9) by F(z, y), the
singularity p (nearest to the origin) and 0 = y(p) are given as solutions of
the following system of algebraic equations:
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F(Z, y) 0)
(4.10)

oF

Sg(z, y) = 0.
Now p and 0 are simple roots of the above equations. By a theorem of Prings-
heim [7, p. 389], p and 0 are positive (real) numbers. Using the two-dimen-

sional version of Newton's algorithm (starting with 2z, = 0, 2 and y, = 1), we
obtain the following numerical values:

p =0, 15268... and o0 = 2, 15254... . 4.11)
Now Theorém 5 of [1] allows us to formulate the following:

Proposition 2

< F,(p, o) \1/2
B, ~ ( o 2 (0> O) ) o e 2,
2m = Fyy (0, 0)

(n > x) (4.12)
~ (0, 63713...) (0, 15268...) " « n~ 32,
Altogether, we have proved:

Theorem 3

The average value S, of the Fibonacci number of a binary tree with »n in-
ternal nodes fulfills asymptotically

Sy~ G rn (n > ),

where G = 1, 12928... and » = 1, 63742... -are numerical constants.
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CORRIGENDA TO “SOME SEQUENCES LIKE FIBONACCI'S”

B. H. NEUMANN and L. G. WILSON
The Fibonacci Quarterly, Vol. 17, No. 1, 1979, pp. 80-83

The following changes should be made in the above article. These errors
are the responsibility of the editorial staff and were recently brought to the
editor's attention by the authors.

p. 80, at the end of formula (1), add superscript "n".

p. 81, in formula (7), replace the second "y'" by "¢".

p. 82, in the line following (8), add subscript "d'" to the last "a'".

p. 82, in the line following (10), add subscript "d" to the last "a''.

p. 83, line 3, insert "growth" between "slower" and "rate'.

P. 83, end of text and reference, delete "t" from the nmame "Johnson'.

Gerald E. Bergum
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