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1. INTRODUCTION 

In [9] 5 the Fibonacci number f(G) of a (simple) graph G is introduced as 
the total number of all Fibonacci subsets S of the vertex set V(G) of G9 where 
a Fibonacci subset S is a (possibly empty) subset of V(G) such that any two 
vertices of S are not adjacent. In Graph Theory [6, p* 257] a Fibonacci sub-
set is called an independent set of vertices. From [9] we have the elementary 
inequality 

pn+1 < f(G) < r + i , ( i . i ) 

where Fn denotes the usual Fibonacci numbers with 

1? = W = 1 J? = TP + TP 

and G is a tree with n vertices. Furthermore., several problems are formulated 
concerning the Fibonacci numbers of some special graphs. The present aim is 
to derive a formula for f(Tn(t))9 where Tn(t) is the full t-ary tree with 
height n: [TQ(t) is the empty tree.] 
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FIGURE 1 

For t = 1, one can see immediately that f(Tn(t)) = Fn+19 so the interesting 
cases are t > 2* In Section 2, for t = 29 33 43 the asymptotic formula 

f(Tn(t)) ~ A(t) • k(t)tn (n •> oo) (1.2) 

is proved, where >l(t) and k(t) denote constants (depending on t) with 
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2 i / ( i - t > < A { t ) < i < k { t ) < 2 i n t ~ 1 ) . 

In Section 3, it is proved that for t > 5 such an asymptotic formula does not 
hold; we show that for t > 5: 

f(T2m(t)) ~ B(t) • fe(t)*2" 
(1.3) 

where B(t) > C(t) are constants depending on t with 

lim B{t) = lim C(t) = 1. 
t -*oo t ->-oo 

In Section 4, we establish an asymptotic formula for the average value Sn 
of the Fibonacci number of binary trees with n vertices (where all such trees 
are regarded equally likely). For the sake of brevity, we restrict our con-
siderations to the important case of binary trees; however, the methods would 
even be applicable in the very general case of so-called "simply generated 
families of trees" introduced by Meir and Moon [8]. 

By a version of Darboux's method (see Bender!s survey [1]), we derive 

Sn ~ G • rn (n -> ° ° ), (1.4) 

where £ = 1, 12928... and v = 1 , 63742... are numerical constants. 

2. FIBONACCI NUMBERS OF t-ARY TREES (t = 2, 3, *0 

By a simple argument (compare [9]), the following recursion holds for the 
Fibonacci number xn: = f(Tn(t))9 

Xn+1 = Xn + xn2-l w i t h X 0 = 1 , X 1 = 2 . ( 2 . 1 ) 

We proceed as in [4] and put y n = log x n ; by (2.1), 

yn+l = tyn + an w i t h an = log U + — 1 . (2.2) 

Because of 

the estimate 

0 < an < log 2 (2.3) 

results. The solution of recursion (2.2) is given by 

, v,/ 0 1 n -1 \ 

It is now convenient to extend the series in a^ to infinity [because of (2.3) 
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the series is convergent]i 

For the difference 

we have 

Therefore, we obtain 

where 

- V = Z t " ' 1 - ^ - (2 .4) 
- i = 0 

?n ~ Un = E ^ " 1 _ X 5 

°<*n < ± 2 * f (2.5) 

xn = gJn"Pn = g"Pn . k(t)tn , (2.6) 

fc(t) = e x p / f ; * - * - 1 ^ (2.7) 

and 1 < &(£) < 2 1 / ( t - 1 } by ( 2 . 3 ) . 

In the fol lowing, we i n v e s t i g a t e the fac to r e~Vn of ( 2 . 6 ) ; we se t 

Qn ~ xn'xn+l 

and obta in the recurs ion 

1 (2 .8 ) 
1 + qf 

from (2.1). It is useful to split up the sequence (qn) into two complementary 
subsequences 

(2.9) 

(uj: = (<72m + 1) = (̂ i» <73> °°°)° 

Lemma 1 

The following inequalities hold for the subsequences (gm) and (um) of (qn) 

(i) 9m+1 > Gm
 for a11 w = ° 9 ls 2> 3> ••• 

(ii) um+1 < um for all m = 05 1, 2, 3S ... 

(iii) um > ÔT for all m = 0, 1, 2, 3, ... * 

Proof: Let qn_2 > qn; then 1 + q*_2 > 1 + q*9 1/(1 + q*_2) < 1/(1 + q$): 
and so 

i + / — ± — r I + 
> 

<7n-2/ V1 + 

19537 221 



FIBONACCI NUMBERS OF GRAPHS: II 

Applying (2.8), we have proved: 

If qn.2 > qn> t h e n Rn > Qn+2' (2.10) 

Because of g > g 9 (i) is proved by induction; (ii) and (iii) follow by a 
similar argument. 

By Lemma 1, (gm) and (um) are monotone sequences with the obvious bounds 

\ < g m < u m < l . (2.11) 

So the sequences (gm) and (um) must be convergent to limits g and u (depending 
on t), The following proposition shows that g = u in the cases t = 2, 3, 4. 

Proposition 1 

For t - 2, 3, 4, the sequence (qn) is convergent to a limit w(t) , where 

w(t) is the unique root of the equation wt + 1 + W - 1 = 0 with -~- < w(t) ^ 1. 

Proof: By Lemma 1 we only have to show that (gm) and (um) are convergent 
to the same limit. For (gm) and (wm) the following system of recursions holds: 

1 

1 + ^ 

1 
(2.12) 

9'm+l - , + 
1 + M 

Taking t h e l i m i t m -»- °°5 we o b t a i n 

w = - , g = — r , w i t h -y < # < u < 1 . ( 2 . 1 3 ) 
1 + 0 * 1 + W* 2 

Let us start with the case t = 2. By (2.13), we have ug2 = 1 - u, ^w2 = 1 - ^, 

and therefore, u - u = g - gz. Because the function a: +> x - x is strictly 

decreasing in the interval —3> 1 , u = g follows immediately. 

In the case t = 3, we derive in a similar way the relation u2 - u3 = 

<72 - g3 . Since the function x +* x2 - x3 is strictly decreasing in the inter-

val -̂, 1 and -^ < g^ = 0, 684..., we obtain u = g again. 

Since the function x +» x3 - a?1* is strictly decreasing in the interval 

T-, 1 and g73 = 0, 7500138.. . > -r-, we obtain u = g in the case t = 43 too. 

So u = £7 in all considered cases; therefore, a limit w(t) of (<?„) exists 
for t = 29 3, 4, and w(t) fulfills the equation 

1 
1 + w t ' 
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Since the function f(w) = wt + 1 + w - 1 is strictly monotone in the interval 

L2' H a n d ^\2/ ^ ° 3 ^ ^ ^ ° 9 ttlere e x i s t s a unique root of this equation in 

the interval [1 il which is the limit w(t) from above. 

By (2.2) we derive 

lim an = log(l + w(t)t). (2.14) 

Because of 

I 1 
1 l o g ( l + w ( £ ) * ) < 5 > W ~ W K - log(l + w(*)*)| < £ - 1 

[for all e > 0, n > nQ(e)]9 the sequence (rn) is convergent; so 

lim eTn- (1 + ^ ( t ) ^ - 1 / ^ - ^ = w(t)1/{t-1] = (1 - w(t))1/{t2-1} (2.15) 

results. Altogether we have established: 

Theorem 1 

Let Tn{t) be the full £-ary tree (t = 2,3, or 4) with height n. Then, the 
Fibonacci number f(Tn(t)) fulfills the following asymptotic formula: 

f(Tn(t)) ~ A(t) • k(t)tn (n -> oo) 

where A(t) = w(t)1/(t~1) and fe(t), defined by (2.7), are constants (only depend-
ing on t) bounded by 

2i/n-t) < A ( t ) < i < fe(t) < 21/^"1) 

J 
2 w(t) is the unique root of wt + 1 + w - 1 = 0 with -~- < w(£) < 1. 

Rema rk: The numerical values of ZJ(£) are 

u(2) = 0, 68233..., w(3) = 0, 72449..., and w(4) = 0, 75488... . 

3. FIBONACCI NUMBERS OF t-ARY TREES {t > 5) 

In this section we consider t-ary trees with t ^ 5. Let (gm) * (um) be the 
subsequences of (^„) defined by (2.9). (gm) and (wOT) are convergent to limits 
g and u3 respectively (depending on t) . We shall prove that g ^ u; therefore, 
(<7n) has two accumulation points. For g, u the following system of equations 
holds, 

u = g (3.1) 

1 + g* y 1 + ul 

and ^ = w if and only if u or ^ is the unique solution of 
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wt+1 + w - 1 = 0 (3.2) 

in the interval y, 1 . If (u', g') and (u", g") are two pairs fulfilling 

(3.1) with uT<.un, then gt%>g!1. Let (u, g) denote the pair of solutions with 
minimal g and maximal u. 

Lemma 2 

The subsequence (gm) of (<?„) is convergent to the limit g and the subse-
quence (um) to the limit u. 

Proof: First we show that gm < g implies um > w and £7m+1 < #• 

Because of ̂ m < g", we obtain 1 + g* < 1 + gt = 1/u, and so um > u. From 

um > u, it follows that 1 + wj > 1 + u* = l/.<7» hence £7m+1 < #. 

Using the fact that g0 = -y < £f, we obtain, by induction, 

lim ̂  ^ g7 and lim um ^ u. 

By the definition of (u9 g), it follows that 

lim # = g and lim um = u9 

and the Lemma is proved. 

Lemma 3 

Let t ) 5 be a positive integer; then there exists a solution (u, g) of 
the system (3.1) with 

2 < ^ < 2 + 1 • 
Proof: System (3.1) is equivalent to the equation 

9= —, (3-3) 
1 + -

(1 + g*)* 
We consider the function 

(1 + gt)t 

vt(g) = — ^ g, 
l + (i + g*)* 

and obta in <Ptl-^J ^ ®> i n t^ i e s e c l u e l » w e s n o w <SMy + -r) < 0. For t = 5 or 6, 
t h i s i nequa l i t y can be shown by d i r e c t computation: 

^5(lo) = ""° 3 ° 1 5 0 2 and ^6(f) = ~0s ° 4306-
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Let us assume t > 7 in the sequel. By elementary manipulations, the inequal-
ity 

1 2 t U 
1 + 

It 
T o r 

i s equiva len t to 1 + ( l + ( 7 + 7 ) * ) * > 7 ^ 

/ 2 \ t / 2 

Because of 11 + 7 1 < ^ , i t i s s u f f i c i e n t to prove 

(••£)• (3 .5 ) t + 2 
£ - 2 : 

We have 

('•#'<-K£). 
and 

e X P\V") ^ * - 2 for * > 7e 

So ̂ .("o" + -r) < 0, and the Lemma is proved, because the continuous function 9 
V 2 t j 1 1 1 

has a root between 7 and 7 +7* 
Equation (3.3) is equivalent to 

g(g* -f 1)* - (gt + l ) ^ r 0 . (3.6) 

jt +1 

The polynomial on the left-hand side of (3.6) is divisible by gt+1 + g - 1. 
/ 3 \ t +1 3 

Because of (y) + -7- - 1 < 0 (for t > 5) , the unique solution w(t) of # 
f3 1 ^ - 1 = 0 is contained in the interval 7, 1 . By Lemma 3, vwe have found a 

pair of solutions (u, g) with u £ g such that y < g < -7- < w(t) < u < 1. We 

denote by (u(£), ^(t))9 £ > 5, the pair of solutions of (3.1) such that #(£) 

is minimal and u(t) is maximal. Because of g(t) < 7 + 7 and u(t) = 1 + git)' 
for £ ̂  59 we obtain 

lim g(t) = -k lim w(£) = 1. (3.7) 

Altogether, we have proved: 
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Theorem 2 

Let Tn(t) be the full t-ary tree (for t > 5) with height n. Then the Fi-
bonacci numbers fulfill the following asymptotic formulas, respectively: 

f(T2m(t)) ~ B{t) • k(t)t2m, 

f(T2m+1(t)) ~ at) • Ht)t2m+\ 
where 

C(t) = (gityuit))1^2-" = (1 - ^ ( t ) ) 1 ^ * 2 - 1 ' , 

B(t) = (jWuWr'*1-11 = (1 - ^i))1^"1 ' , 

and k(t)9 defined by (2.7), are constants (only depending on t) bounded by 

2i/(i-t) < c { t ) < B { t ) < 1 < fe(t) < 2i/(t-i) . 

g(t) is the minimal root and u(t) the maximal root of 

x(x* + 1)* - (x* + 1)* + # = 0 

in the interval I -r-, 1 ; furthermore, 

lim B(t) = lim C(t) = 1. 

Remark: In [2], similar recurrences are treated by a slightly different 
method. The recursion for (qn) can be considered as a fixed-point problem and 
our results can be derived in principal by studying this fixed-point problem. 

4. THE AVERAGE FIBONACCI NUMBER OF BINARY TREES 

The family B of all binary trees is defined by the following formal equa-
tion (• is the sumbol for a leaf and o for an internal node): 

o 
6 = • + / \ ; (4.1) 

(this notation is due to Ph. Flajolet [3]). The generating function 

B{z) = ZKzn 

of the numbers of binary trees with n internal nodes is given by 

B(z) = YZ ^4-2^ 
and, therefore, 

bn--^T(ln). (4.3) 
n n + l\n I 
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For technical reasons, we consider the family £* of all binary trees with 
leaves removed; g* fulfills 

0* = 0 + 0 + 0 + o (4.4) 

e* 3* 3* 3* 

Let 3n be the family of binary trees t with n internal nodes, and let 

/00 = Z fn*n and g(z) = £ gnzn 

be generating functions of 

fn = S card{5 : 5 C F(T) ; S a Fibonacci subset 
Te#n n<2t containing the root}, 

9n
 = X) card{5 : 5 C 7 CO ; 5 a Fibonacci subset 

^€3« containing the root}. 

(4.5) 

Obviously, the average value of the Fibonacci number of a binary tree with n 
internal nodes is given by 

Sn = J- with hn = '/„ + gn. (4.6) 

The remainder of this paper is devoted to the asymptotic evaluation of Sn. By 
Stirling1s approximation of the factorials, the well-known formula 

bn ~ -7= 22nn-3/2 (n + <*>) (4.7) 

holds and we can restrict our attention to hn. 

For the generating functions, we obtain 

/ = z + z(f + g) + z(f + g) + s(/ + # ) 2 

0 = s + zf + a/ + 2/2. 
(4.8) 

[The contributions of (4.8) correspond to the terms in (4.4).] Setting 

y(z) = 1 + f(z) + g(z), 

we derive, by some elementary manipulations, 

z3yk + (2z2 + z)y2 - y + (z + 1) = 0. (4.9) 

Now we want to apply Theorem 5 of [1]; for this purpose, we have to determine 
the singularity p of y(z) nearest to the origin. (4.9) is an implicit repre-
sentation of y (z) * Abbreviating the left-hand side of (4.9) by F(z, y)s the 
singularity p (nearest to the origin) and a = y(p) are given as solutions of 
the following system of algebraic equations: 
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F(z, y) = 0, 

**< > n (4-10) 
^{z, y) = 0. 

Now p and O are simple roots of the above equations. By a theorem of Prings-
heim [7, p. 389], p and a are positive (real) numbers. Using the two-dimen-
sional version of Newton's algorithm (starting with s0 = 0 , 2 and y0 = 1), we 
obtain the following numerical values: 

p = 0, 15268... and a = 2S 15254... . (4.11) 

Now Theorem 5 of [1] allows us to formulate the following: 

Proposition 2 

hn U - ^ ( P , a>; p • ( n _ } (4el2) 

~ (0, 63713...) (0, 15268...)~n • n"3/2. 

Altogether, we have proved: 

Theorem 3 

The average value Sn of the Fibonacci number of a binary tree with n in-
ternal nodes fulfills asymptotically 

Sn ~ G • rn (n -> oo) 9 

where (7=1, 12928... and i3 = 1, 63742... ̂ are numerical constants. 
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CORRIGENDA TO "SOME SEQUENCES LIKE'FIBONACCI'S" 

B. H. NEUMANN and L. G. WILSON 
The Fibonacci Quarterly, Vol. 17, No. 1, 1979, pp. 80-83 

The following changes should be made in the above article. These errors 
are the responsibility of the editorial staff and were recently brought to the 
editor's attention by the authors. 

p. 80, at the end of formula (1)9 add superscript "r< 
p. 81, in formula (7), replace the second "<y" by "£! 

p. 82, in the line following (8), add subscript 
p. 82, in the line following (10), add subscript "<f" to the last "a". 
p. 83, line 3, insert "growth" between "slower" and "rate". 
p. 83, end of text and reference, delete "t" from the name "Johnson". 

Gerald E. Bergum 

^o^o# 
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