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=

Some properties of the language {w € {a, b}* | (%) = (%)}, whick: can be regarded as a general-
ization of the (unrestricted) Dyck-language, are given. () are the binomial coefficients
for words.)

1. Introduction

Let 3* be the free monoid generated by the alphabet 3 with unit &. The
binomial coefficients for words are defined as follows: For x, ye 3* let (}) be the
number of factorizations x = xyc;x; * * * X,_1C,X,, Where y=c¢, - *c., ¢;€3. They
appear for the first time in [1] within the context of p-groups. They can be used in
order to embed the monoid 3* in the ring of all formal power series in the
noncommuting variables o € 3 with real coefficients by means of

w
we T (Y)=
zes* \Z

See also the reference given in [5]. Since they are a generalization of the urdinary
binomial coefficients (;) (for 3 ={c} and with the identification " = n), tkey seem
to be important from a combinatorial point of view.

In the sequel it is assurned that 3 is the two letter alphabet {a, b}.

The (unrestricted) Dyck-language D (cf. [2]) can be expressed as

WHHW

This leads to the following generalization: For x, y € {a, b}* let

WRlW)

x y/y

In this paper the case x = ab, y = ba will be considered. For sake of convenience
D(ab, ba) is shortly denoted by A in the sequel.
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D= {w €{a, b}*

D(x,y)= {w e{a, b}*
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It is necessary to give few additional definitions: For w € {a, b}* let |w| denote
the length of w and w® the mirror image.

soor=(3)-(2):

Clearly A ={we{a, b}*| A(w)=0}. Finally let o(a)=1 and o(b)=-1.

The structure generating function of a language L= 3™ is the formal power
series Y*_, u,z", where u,=|LN{a, b}"|. (Cf. [6]) For L= X™* the syntactic
congruence ~, is defined by x ~, y iff for all u,ve 3™ uxveL holds exactly if
uyv € L holds (cf. [1]).

This paper gives the following results about the language A: Differently from D
A is not contextfree. A submonoid of 3 X3 matrices with integer coefficients
which is isomorphic to the syntactic monoid 3*/~, of A will be given. The
coefficients u, of the structure generating function of A are examined. It turns out
that u, is the number of solutions of

i Sk(n+1—'2k)=0 (8k E{_l, +1}).
k=1

The asymptotic behaviour of u, will be established by a method similar to that of
Van Lint [4].

2. Results
Theorem 1. A is not contextfree.

Proof. It is sufficient to prove that A’':= A N R is not contextfree, where R is the
regular language a*b a*b*.
For icN,

(ainiaJibi

ainia3ibi)
ab )

)=i-2-i+i-i+3-i-i=6i2=2-i-3-i=(
ba

Therefore a’b”a*b' € A'. Assuming A’ to be contextfree the uvwxy-theorem (cf.
[3]) guarantees a faciorization a‘'b*a™F' = uvwxy, where i is large enough and
vx# g, |[owx|<m, such that uv"wx"ye A’ for all neN,. It is a simple calculation

to show that all possible factorizations lead to a contradiction by taking a suitable
n.

Next the syntactic congruence ~ 4 is characterized.
Theorem 2. x ~ .y if and only if A(x)=A(y), ®)=C) and ¢)=().

Proof. First it should be noted that w == w® implies A(w)=0.
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Let be x~,y and u e{a, b}*. Then
xu(xu)® ~, yu(xu)® and  (xu)Rxu ~4 (xu)Ryu.

Since xu(xu)®e A ((xu)®xucA) it follows that yu(xu)Re A ((xu)Ryuec A).
Therefore

S

and

o-tnr=sty-si+ ()3 ()(7)

Adding these equations
_ xu\ (yu\ _ (xu\(yu
AGu)=4(yu) and (a )(b ) (b )(a )
for each u is obtained. Setting u = ¢ yields
00 s ()0)-()0)
s s (0)-))
Setting u = a yields
G)-GC)
a/\b b/\a
or equivalently
(G)+1)G)-G)C)+)
a b b/\\a

from which (;) =} follows. For u=b (})=(}) is obtained in a similar way.
A simple calculation gives the second part of the proof.

Remark. Since

aw=2(3)+(D)+(E)-(3)

the condition

A(x)=A(y) and (;)=(Z) nd (;)=(3)

is equivalent to

()= () e (2)=C) =m0 G)-(5)
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Now the syntactic monoid of A can be described. For this purpose let M be the
stibmonoid of the (multiplicative) monoid of 3 X 3-matrices with integer coeffi-
cients which is generated by

110 00
m=10 1 0) and m={0 1 1).
0 01 0 0 i

Theorem 3. {a, b}*/ ~ 4 is isomorphic to M.

Proof. It s easy to see that

1 G
efw)i=10 1 (‘3))
0 0 1

is the unique homomorphism from {a, b}* onto M for which ¢(a)=m, and
(P(b) = M3,

By Theorem 2 and the remark ¢(x)=¢(y) if and only if x ~, y. Hence ~, is
the congruence induced by ¢.

Let Y _ou,2" be the structure generating function of A. To study the asymp-
totic behaviour of u, some preparations are made.

Lemma 1. For each word w=a, ' ' a, (a &{a, b}

28(w)= 2, a(a)(n+1-2k).
k=1
Proof. By induction on n.
() For n=0, i.e. w=e¢ the statement is obvious.
(i) Now let |w|=n be assumed.

24(wa)= 24(w)—2(:)

- Z e@)(n+1)+1-2k)- 3 o(a)- 2(})
=1

(@ )(n+1)+1-2k) - () (‘;’)

L'M’

k

+
-

n

= ), a(a)(n+1)+1-2k)

k

since

_(W)_ (:\F —n=a@)((n+1)+1-2(n+1)).

a

The calculation for wb is similas.
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Lemma 2. u, is the number of solutions (e,,...,¢,) of

¥ e(n+1-2k)=0 g el-1,+1}.

k=1

Prook If w=a,'++a,€A then 4(w)=0. By Lemma 4 (o(a,),...,0(a,)) is a
solution,

If conversely (ey,...,&,) is a solution then o"'(e;) * * * ¢~ '(g,) € A. Clearly the
above correspondence is 1 -1,

Theorem 4.
3 iR n -32
e AT [ 2 -
Uy ~2 (n) [2] '

where [x] denotes the greatest integer <x,

Proof. Let n=2m. The number u,,, is the constant term in the expansion of
o "
n (xatzk»1)+x2k=l)2
k=1
which can be expressed as

A A-ak-ng ,x-1242
2"iL .!3'(2 +2 ) z

(C is the unit circle in the complex plane.) The substitution z =e'* yields

2m+1 pw/2 m
Uz 2 I I1 cos? 2k = 1)x dx.
Ky ) k=1

For ml22m-=-1)€x<n/2 is
IT cos? 2k - 1)x = 6™,
k=1

For 0<x=m/2
cos® x<e ™
holds. Therefore

w2(2m~1)

w/22m—-1) m
L T1 cos® @k—1)x dx < I
k=1

\]

w/20m~-1) 4m3 m)]
= -x——=
L exp[ X ( 3 3 dx

12
- (3m) m-32

4

exp [—x2 kz (k- 1)2] dx
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Similar to the calculation in [4] it will be shown that the symbol “<” can be
replaced by “~":
Let 0= x <m~%3, then

ﬁ cos? (2k=1)x = ﬁ e k- TT {1+ 0((2k = 1)*x%)}
k=1 k=1 k=1

3

o-(2k=Dx? ﬁ {1+ 0(k*x*}
k=1

~
=

k

14

exp{ ) (2k—1)’x’+0(m""‘)}.

B N k=1
Thus
w/22m—-1) m
I [T cos® (2k - 1)x dx
) k=1
m ¥ m 3 12 _
> [ I cos® 2k~ 1)x dx ~ BT o2,
) k=1
Hence

3\12 3
U ~ 22m—! (___) m- /2.
w

For n=2m+1 a similar calculation shows that

3\12 a
TR ~'22m+|(__) m /2.

T
The number of solutions of

2 e (n+1-2k)=0
k=1
is the same as the number of solutions of

n/2 ((n—l)/2

Xack-n=o0 (3 {kk=0), toe{-1,0,+1}
=1 k=1

for even (odd) n:
To show the first statement let be n =2m.

2m m 2m
kZ aZm+1-2k)= } e 2m+1-2k)+ Y e(2m+1-2k)
=1 k=1 k=m+1

Eme1-i(2i=1)+ Y, €nri(1-2i)
i=1

M= e

(8m+ 1-i 8m+i)(Zi - 1)

-
I
-
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Defining {; =4(e,.+1-, = €m.,) there is a 1-1 correspondence between the two
sets of solutions. The second statement can be seen in a similar way.

If in a solution all {, are in {=1, +1}, the corresponding word we A has the
property that it has no factorization w = xcycz where |x|=|z| and ce{a, b}. Let B
denote the subset of A which contains exactly the words with this property. Then
the asymptotic behaviour of the coefficients v, of the structure generating
function of B can be established by methods similar to those of Theorem 4.

Theorem 8.
n—-1/2 3 2 =3/2
2 ; n for even n,
Uy ~
0 for odd n,
1/2
e (%) n*? for n=0, 3 (mod 4),
Van+
0 for n=1, 2 (mod 4).
Proof.
—— ( 2k—1+z—(2k—1))93
z

n

- .[" cos 2k —1)x dx

Vo =

T

1 n
27 ,‘131
2 n

I1
k=1

2n+l /2
L ]"I cos (2k—1)x dx for even n
k=1
0 for odd n.
Now let n be even: For 0<x < /2, cos x <e **/2 holds.
"11/2(2n—|) n w/2(2n—-1) n
jo r[ cos Rk—1x dx < [ exp [—%xz Z k- 1)2] dx
k=1 k=1

~((3m)'2(2n)32,
vzn+1=2iiL l:l (z¢+z _k)g‘g:z L l-[ cos kx dx

2n+l

L rnI coskxdx n=0,3 (mod4)

0 n=1,2 (mod 4).
Now let n=0, 3 (mod 4):
m/2n n w/2n x2 n
L [T cos kx dx < L exp [—? Y kz] dx ~{(37)"*(2n3) "2,
k=1 k=1

The justification that “<* can be replaced by “~” is as in Theorem 4.
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