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GENERALIZING THE SUM OF DIGITS FUNCTION*
HELMUT PRODINGER*

Abstract. The number theoretic function Ga.a(")=zk=127:(: ln/q* +ja| has appeared in the

literature for some special values of a. Some properties of this function are investigated. Since Ggo(n) is
closely related to the sum of digits of the g-ary representation of n, a generalized “sum of digits” function
can be defined via G, .. For g =2 and a =27° the summing function of this ‘‘sum of digits” function is

analyzed using a technique of Delange.

1. Introduction and elementary results. Let g €N, g # 1 and define the functions
Gq,a ZNQ nd No by

(1) Guualr)= T T |Ze+ial.

k=1 1sj<q tq

(lx] denotes the greatest integer less or equal to x.)

To make this definition meaningful, @ must be in the range a €[0, (g — 1)™Y). But
for all considerations (except for Theorem $) it is better to restrict a to the range
[0, g7'], especially because the generalized “sum of digits” function (see § 2) takes
then only nonnegative values, which is very desirable.

In [6] an alternative expression for G, /4 is given by a complicated method; the
same method applies to G,,1,2 showing that this function is the identity.

The last result can be found in [4, p. 43] in the general form

(2) Gaiqn)= YL X l_—n'k"*"]‘J =n.
k=l tsj<q Lg q
In the sequel it will be shown that, starting from (2), some formulas for G, . can
be derived in an easy way. To be able to formulate this result adequately, it is useful
to use the following denotation.
If £ is a string of integers in the range [0, ¢ — 1], let B,(¢, n) denote the number
of subblocks £ in the g-ary representation of n (subblocks are allowed to overlap).

THEOREM 1.

Gq,q-:(n)=n—lz' jB,(jyn)+ ¥ jBa((g—=1)"", n).

Si<q lsj<q

(For instance, G2.1/4(n) =n —B3(1, n)+ B,(11, n).)
Proof. 1t is sufficient to show that the number of indices k, / such that

ENI N
7 q 9 ¢

equals

Z qu(irn)_ Z th((q_l)s_ltyn)-

1s5/<q 1=r<q
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36 H. PRODINGER

This can only happen if

[

[—n}-+—J = 1+l—r£,;J and s=2.
q q q

(For s =1 the theorem is trivially fulfilled.) Now assume that the fractional part of

n/q* starts with the digit j, 1=j<q—1 (with respect to the g-ary representation of

n). Then in (1) each [ with j +[ = g is possible (there are j of such /’s), and furthermore

3413

Now assume j =g — 1. Then there are again ¢ —1 indices in (1) such that j + /=g, but

n n
el
a 49 q
is also possible, and this happens if and only if the fractional part of n/g* starts with
q-1,9q—-1,---,9—-1,¢t;in (1) each / with ¢t +/=q is possible (there are  of such [’s).
Since the sum over & in (1) means that every digit is exactly one time the leading

digit of the fractional part of n/q*, the proof is finished.

Remark that the formula holds also for « =0 where the second sum vanishes,
which can be seen as a ‘“‘limiting case”’.

In the sequel it will be shown that G, , for 0 <« < ¢~ ' has a rather erratic behavior,

which contrasts to the case a =q~".
LEMMA 2. Assume a #q~"'. Then there exists an n such that

Gaa(n)=Gaaln+1).

Since the proof of this lemma is rather long and not too interesting, we just
indicate that an appropriate choice for n is (with respect to the g-ary representation)

of the form (1000 - - - 0),.
THEOREM 3. For 0= a <q~' the function G, is not surjective.

Proof. By Theorem 1,
9" =Ga1/a(@) 2 Goa(q) Z Gaolg) =q' — 1.
Thus there are numbers ¢, < ¢, such that
Gaa(@®) = Gaalq™) =q%-q".

Because of the monotony of G,., surjectivity in the interval [¢, t,] means also
injectivity, but this property is not fulfilled.

Remark. If a is allowed to be in the range a €[0,(q—1)7"), a # q—1 (compare
the comments after the definition of G,,), Lemma 2 and Theorem 3 are still true.

[t is clear that from «a = it follows that G, ,(n) = G, 3(n). The following stronger
result is easily obtained.

THEOREM 4. If a < then there is an n such that G, ,(n) < G,z(n).

Proof. Choose numbers n, k such that

1-B=—<l-a;

. then
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As D. E. Knuth has pointed out [5], it would be interesting to investigate Gg.(n)
for fixed n, where a is the variable. A first result in this direction is the following
theorem.

THEOREM 5.

1

J Gaal(n) da =n.
0

Proof. Since
1

L lx+a de=x,

it follows that
1

J'Ol Gi.o(n) da =L kél b{%+ aJ da

Y1'n n
= — d ——w:
kél «[o [2k aJ *= kél 2" "

(It is not very hard to see that the integration and the summation can be interchanged.)

2. The summing function of the function “generalized sum of digits”’. In Delange
(1] the summing function of the function “sum of digits to the base q” is considered:

The sum of digits is
2 n n
s = (| 7)-d7=])
a(n) r}-:o q Qq T

-n== &[]
3) o
—n-rgolgxl. ’HJ

Z ]Bq(ly n) =n- Gq,o(n).

1sj<q

In view of § 1 it is natural to define the generalized function “sum of digits” by
Saaln) = n—Ggaln).

In [1] it is proved that

1 m—1

-1
— Z Saln )“—-—logqm+F(logqm)
m 2

where F(x) is continuous, periodic with period 1 and thus bounded. (log, m means
the logarithm to the base g.) Further information in this area can be found in the
beautiful thesis of Flajolet [2].

In the rest of this paper the summing function of S;,-+(n) is treated, but I hope to
do further work in this direction in the future. The ordinary sum of digits appears as
the limit for s > 0.

From Theorem 1, we know that

Gaa-+(n) =n—Ba(1, n)+ By(1%, n).
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Plugging this into the definition of S, ,, we find that

' Saa-+(n)=By(1, n) = Ba(1%, n)

(4)
= S5(n) — B2(1%, n).

S0 §,,-:(n) is just the number of ones in the binary expansion of n minus the number
of blocks of s consecutive ones in that expansion.

The rest of this paper is an analysis of the summing function of the function
B,(1°, n); then by (4), an analogue to Delange’s result of S;-+(n) can be formulated
as a corollary.

THEOREM 6. Let B,(1°, n) denote the number of subblocks of s consecutive ones
appearing in the binary representation of n, where overlapping is allowed. Then the
summation of B,(1°, n) is given by the formula

Lot o logam—(s—1
m .= 2

E
+ H,(log, m)+—,
m

where H, is continuous, periodic with perlod 1, and satisfies H;(0) =0, and where E is

bounded by 0=E<1.
Proof. A crucial point in Delange’s derivation is the property

(5) lz{éJ=|.;n;J fornst<n+1.

For a # 0 it is not trivial to find an appropriate analogue.
An analogue to property (S) can be written as follows:

ERENEN

holdsfornst<n+landr=sandalsoforn—(1/2"")=t<n+1-(1/2""")and r<s.
Let [ =log, m. We have

Z By(1%, n) = Z Gaa-+(n)— Z Ga0(n)

n=0
s=1 pm=2770 L+ ¢ 1 uy rm t
= dt+ J l ,+—J dt— j [—-—;—J dt
2 L lz 2J Z o L27 2° ,§o o 277

r=1 =

s-1 m 1 W orm t 1 t
= - Tl ==+ +—=1-
L2 lz' 2‘J Eo.[, (lz'*‘ 25J lz’“bd’

Now define
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gs(x) is periodic with period 1, continuous and g, (0) = 0. With this notation we can write

5 - £ [ (o) 2 ng-c

1]
-5 zf“gs(z,ﬂ) +(U+D5-C

r=0

= 3 2ig () nF-C

r= =00

=y ik okt 1)+([1J+1)——-C.
k=0

Now remember that m =2’ and define {/}=!—|/] and

ho(x)= T 27%g(x2").
k=0
Then
z B,(1%, n)=m2'" . p, 2" ‘)+(Llj+1)—-C

n=0

Now defining
H, () =2""h," - <{l} 1),

it remains only to analyze the quantity C to complete the proof. '

c-Tr{Fez]-T 7]

since r lies in the range 1=r=s-1. Thus

C= zz"() S o { }=m’—;1—15.

r=1 r=1

Since {x} lies always in the interval [0, 1), we can deduce that the remaining error
term E must also lie in that interval.

Using Delange’s result on the summing function of $»(n) from [1] we get immedi-
ately:

COROLLARY 7. If S, .(n) denotes the generalized ‘“‘sum of digits” function defined
above, then the summing function of the quantity S, 2-+(n) is given by

1 m=t 1 1 -1 E
— Y 832 )—(———) log, m+ + F (log; m) — H,(log: m)———-
m n=0 2 2 2

where both F and H, are continuous, periodic with period 1, and take the value 0 on
the integers, and where E is bounded by 0= E <1.

3. The Fourier series for H,(x). Delange [1] has already determined the Fourier
series for F(x). Similar methods apply to H,(x).
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THEOREM 8. The Fourier expansion H,(x)=Y, h« e**™ of the function H,(x)
converges absolutely, and its coefficients are given by

1 1
ho= o8 (1) ~griggs "3

¢ (120k7"2i’ 1 —2—1’-) _g(lzoka
he = g oo g fork #0.
(1 4 2Km
2km(1 log 2)

Proof. Let 0=x < 1. Since
1-x
2° 7

H.(x)=2""h,2" " H+

the determination of the Fourier coefficients decomposes as:
1 ‘ 1 ¢! _
i = J 2 R (257N e TR dx +55 J' (1-x) e ™ dx = ai + bi.
0 [}

It is easily seen that

1 1 1 1
bk—é—;'m for k #0, bo—?'i,

1 0 )
Qe = J 21—1: Z 2—rgs(2r+x—-1) e—2kfnx dx,
0

r=Q

and as in [1], the integration and the summation can be interchanged:
«© 1 X
ag = z J’ 2"’_xgs(2f+x-l) e-kax dx.
0

r=0

The change of variable x =1 —r+log, u gives

1 2r
-r—x r+x-—= =2kmwix 1 s .
f 21 g, (2T e dx = J gu(i‘)exp (—2kmi - logs ) du.
0 Zr—l

log 2
Thus
1 gl
ag = log 2 L/z 2+ 2kmi/log? du.
As in [1], the integral
Cbs(z)=J' gsz(i‘l) du
12 U

should be studied; then

1 2kri
- Lo (14 2m)
ax log 2 ! log 2

Since

gs(u)= L ([“‘;‘J — ¢} —21—,> dt,
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by partial integration for Re z >0,
1 257t 1 1 1\ du
oior=-p L (b B2
(Z) 2', V4 Z J1/2 \ “ 2 LuJ 25 u
For Re z >2, the integral can be split into three parts. The third one is
_1 lr du_ 11 27
. .

The second one is

The first one is

S WETTRY o PP
z hn 2°du® oz )iy 2°iu® z(z-1) AV

where (z —1, a) is the z-function of Hurwitz (see [3]). This gives

1
| +{(z—1,1-§;>—§(z-—1)
2° z-1 - z(z-1)

This holds for Re z > 0 by analytical continuation. This gives

po Ll L 1 (1+2km>'1<§(2km'1__1_)_{(21(17:>
“T 725 2kmi 2kmi\ log2 log2 2° log 2

for k # 0. Now a, must be computed. From [7],
{(z-1,a) =i-a+(z- 1)(log I'(a) -3 log Q7))+ O((z - 1)%) forz-1.
Thus

{(z -1, 1—-21—5> LI S 1)<log r(1 ——2}—> —%bg (217)) +0((z -1,

z-1)=¢(z-1,1)=—1—(z—Dilog 2m)+ O((z—1)?),
277 =1+ (log2)(z - 1)+ O((z = 1)%),
§= 1-(z=1D+0((z-1D.
This yields after some manipulations

d,(z)= -51;(1 +log2)+log F(l —2—1;) +0(z-1)% forz-1.

Hence

1

1 1
= —— — 4] r(l___.)
0= "5 og2 20 082 2°

Finally, since £(it, a) = O(|t]'/* log |t]) [7], the Fourier series of H, will converge
absolutely.
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