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In words, generated by independent geometrically disitbvandom variables, we study thk descent, which is, roughly
speaking, théth occurrence of a neighbouring paib with a > b. The valueq is called the initial height, and the end
height. We study these two random variables (and some sianikss) by combinatorial and probabilistic tools.

1 Introduction

Let X be arandom variable (RV), distributed according to the gatoimdistribution with parameter(geom(p)):

P(X = k) = pg"~!, with ¢ = 1 — p. We consider a sequencg, X, ... X,, of independent RVs. We also
speak abouvordsa; .. . a,; there is some interest of combinatorial parameters of swards, generated by
independent geometric random variables. In this paper werage the study oflescents

In a wordw; abw, We say thatb is thelth descent, itv > b (strict model) ora > b (weak model), and the
initial word w1 a hasl — 1 descents. Furthermore, we refertas thenitial heightand tob as theend height
Equivalently, we use the notions initial value and end value

In (5), these random variables where studied, but only ferl, i.e., thefirst descentHere, we are able to
deal with the general case.

This paper uses a generating functions approach and a plistiabpproach. The results complement each
other, but are not disjoint. Of course, both are very useidliateresting.

The generating function approach is as follows: First, westuct a generating functiof(z, v, «) in 3
variables,z, v, u, wherez marks the length of the word, the number of descents, andhe last letter of the
word. In other words,

F(z,v,u) = Z P[a word of length: hasl descents and last lettglr
n,j>1, 1>0
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2 Guy Louchard and Helmut Prodinger

Occasionally, it is clearer to writ€'(u) only.

Once this is achieved, we construct a new generating fuméiofor initial height, H for end height), by
attaching a descent (which is a simple substitution, siheevariableu “remembers” the last letter) and an
arbitrary rest. In this way, we have a generating functiomese the variable no longer codes the last letter,
but the initial height (resp. end height) of ttte descent.

The quantities that we get fér= 1 coincide (of course!) with the older paper; however, thesnemut in
different forms. To show formally that they are the same, wses identities from-analysis, such adeine’s
transformation formulaThis was demonstrated extensively in (5).

We also consider the analogous questionsafarents;the motivation is that, in (4), thiast descent was
studied. In the reversed word, the last descent becomefirsh@scent, and now we have developed the
machinery to deal in general with tlién ascent.

The probabilistic approach works as follows. We start framirdinite sequence of geometric random vari-
ables, with parameter (geom(p)). First, we consider the successive descents as a Marlkam,atelated to
initial and end values of each descent. Next, we use this Machain to obtain the distribution of initial and
end values of first and second descents. Then, the first merottite first and second descents initial values
are analyzed by intensive use of some combinatorial idestiNext, we obtain the asymptotic distribution of
the number of descents initial values in some interval. Ikinstarting fromn geom(p) RV, asq — 1, we can
derive the asymptotic properties of first and second desciena large permutation.

In this part, only the strict model and the descents will besidered.

The explicit forms of the distribution of the descents beeorery complicated when going from first to
second etc. descent. However, a stationary distributibigiwnis very simple, is rapidly approached. It is given
by

Tt — gt
q

for the initial height, and by

L4+q 94

—Dpq

q

for the end height. There is an intuitive explanation of théhe first one is the conditional probability that
we have a paifj, given that it is a descent, and the second one that we havie g pagain given that it is a
descent.

Several useful combinatorial identities, derived frbl@ine’s formula are given in the Appendix.
We will need notation frong-analysis; the mostimportantones &r¢,, := (1 —z)(1—qz)...(1—x¢" 1),

and m = ﬁ (Gaussian coefficients). The relevant formulae can be fout)i

Combinatorial Analysis

2 Descents: the weak model

Let f;(u) be the generating function with"u’] f;(u) is the probability that a word of length > 1 hasi
descents, and that the last lettelj igOnly the dependency on the variabldas been made explicit.)
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Here is the recursion far> 1.

puz

filu) =

fiea(1) =

puz
1—qu —1(ua) + 1- qufl(w])'

Now let

F(u) = F(z,v,u) Zﬂ

>0
Then we get, by summing up,

puUvVZ puUvZ

Flu) = folw) = §= - F(1) = {2 Flug) + 1 F(ug) = 77 fo(ua)
But puz puz
fo(u) = Toqu 1o qufo(UQ)
and so ( )
_ puz puvz puz(l —w

This functional equation can be solved by iterating it:

Z N (puz)* (1—v)*q ( )
b2l (e 2.1)

2)k(1—v)k (2)
1— UZkZO (pz) ((q)k) q

F(z,v,u) =

Now we turn to the end heights. As indicated already, we madeedwwn step, record its height with the
u-variable, and then attach anything/(1 — z)). This gives the generating function

puvz pEU

H(z,v,u) = [F(z,v,1) — F(z,v,uq)]

1—qu 11—z 1—qu

The next step is to look at the behaviour for— oo. Intuitively, it is quite clear, there should be a limit,
since what happens at th descent must become independent of letters very far taghe Indeed, we see
that there is a simple pole at= 1, and the generating function

puUv
1—qu

U(v,u) = [F(1,v,1) — F(1,v,uq)],

that is obtained fron# (2, v, ) by dropping the factot /(1 — z), and the irrelevant additive term and replacing
z = 1, contains all the information. The coefficientqdfis a probability generating function in the variahle
alone. Indeed, it is easy to check thiatw, 1) = . Explicit expressions become very messy, but at least the
instancd = 1 (which was studied in (5)) is manageable:

pu
1—qu

1—qU{Zpkq Z%]'

k>1 () k>1 k

[0' ] (v, u) =

[F(1,0,1) — F(1,0,uq)]
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All moments can be derived from this by differentiationst ue just do this for the average (first moment):

,
) 1 0 (pqu)kq(z)
E[first descerjt~ — — — Z AR 2
podum (@Puk [
1 k(pg)*q(2) kg(s) KEL i
s S S S
p k>1 q° )k i>1 q° )k st q
1 = phgld) > p*q) zk: ¢ 22)
P> (@ k>2 @k st 1—-g¢q*
Note that this average was given as
1
==Y (h+ pg® T (—p)n (2.3)
p h>0

in (5).

For the limiting behaviour of this, ag — 1, we should consider, in order to get a meaningful result,
lim,_,1 (1 — ¢)E[first descerjt which evaluates to

11 H, 1 H,
1_ZEZE:1_Z]{;_II<+ZH:6_ k.

! ! k!
E>1 " =2 E>1 E>1 E>1
A similar compution can be done fgenerall, and the resulting generating function is

1 1 v Hi(1—v)kt
v 1—v+1—v61*” 1—1}61*”];1 k! '

(the coefficient ofo! is the previous expression).

Now we turn to thenitial heights. The same approach applies, but the substitution is eveneinvde get

1
G(z,u,v) = vz[F(z,v,u) — F(z,v,uq)]1 + 1pzu .
-z —qu

The limit forn — oo leads then to the generating function
O(v,u) = v[F(1,v,u) — F(1,v,uq)].
Let us compute again the instarice 1; the coefficient ofv! is particularly simple:

[v')®(v,u) = F(1,0,u) — F(1,0,uq).

From this, we find that the average is asymptotic to

) (pu)tq(2) (pqu)*q(2)
%[Z (qu)x P iar }

k>1 ; k>1 (

(2.4)



Initial and end heights of descents in samples of geomdlridastributed random variables 5

This checks with the expression

> (4 1)pg"  (=p)n = Y (2h+ 1)pg" ! (=p)n, (2.5)
h>0 h>0
givenin (5).
For the limitlim,_; (1 — ¢)E[first descerjtwe get the generating function
1 o v ZHk(l—v)’“_l
v(l —vel=?) vl —-v) 1—wvel=v k! '

k>1

The coefficient ob in this is

e—l—z%.

k>1

3 Descents: the strict model

Computations are similar; we only give the key steps. Thetional equation is

puz puvz pz(l —wv)
F(u) = F(1) + ——~F(uq).
Thus _—
(pz)" (1—v)"
k(1 _ p)k—1 UZ S
Fle,v,u) =0 (p2)" (1 —o)* (1+0F(0,1) = T P— (3.1)
E>1 (ug)r - ZkZO O
Also,
pUVZ pUZ DU
H = I )——F .
Hence puw -
U(v,u) = F(1,v,1) — F(1,v,uq).
(0.0) = 2P (1, 01) = s (1L, ug)
And
o0 (0, u) = 2L F(1,0,1) — —E2—F(1,0,uq
V() = TE P (,0,1) o B F(1,0,u0)
k k
_ _pu " pu p
1—qu k%:l (@r  1—qu kZZI (ug® )
The expectation can be obtained by differentiation, foddvlbyu = 1:
D (3.2)
P @k g
The formula given in (5) is
1 hq2h—1
—=Y oo (3.3)
p h>1 Pq)n



Now, let us compute the limit fl — ¢)E:
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Hp -1 Hy,
L= T m e gy
E>1 E>1
And in general:
1 1 v Z Hy(1—v)kt
1—vel=v 1—0v 1—vel~v k! '
E>2
Now, for the initial heights, we must consider
Glz.v,u) = v2[F(z,0,0) — ~F(z,v,qu) pe
Z,0,U) = vz Z,0,U) — — zZ,0,qu
3 3 3 3 q ) 7q 1 _ Z 1 _ qu7

and

O(v,u) =v[F(1,v,u) — %F(l,v,qu)].

Furthermore, to look at the first decent,

[v!]®(v,u) = F(1,0,u) — %F(l,O,qu) = uz
k>1

From this, the average, obtained by differentiation, is

The last simplification was by (A.6). The version given in ib)

eyt

h>1 h>1

1 1

hpg"~ [
(Pa)n (Pq)n

The limiting functionlim,_, (1 — ¢)E is

v

P —Uu
(qu)k

k pk

(¢Pu)r

D

k>1

(3.4)

(3.5)

(1 —v)*(Hi1 — 1)

1—v)*H,
DR

E>1

-2

1 —wel-v
E>1

(k+1)!
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4 Ascents: the strict model

First, we consider the case where oaly: b is an ascent.

Again, the treatment is very similar to before, so we onlyeghe key steps.

Let fi(u) be the generating function with™u’] f;(u) is the probability that a word of length > 1 hasi
ascents, and that the last letteyfjis

Here is the recursion far> 1:

_ _puz . __puz puz
i) = T 1) = o filua) i ().
Now let
F(u) =F(z,v,u) Zfl
>0
Then we get
puz puz puz(v —1)
F(u) = 1)+ ————F
(1) = T o P (1) 4+ P F ()

This functional equation can be solved by iterating it:

> (puz)* (0=1)"(2)
F(z,v,u) = = ()i - (4.1)

z)k(v—1)k—1 (2)
1— 2@1 (M(#

Further,
H(z,v,u) =

and
puv

1—qu
The case of the first accent, i.e., the coefficient'ofis thus

U(v,u) =

F(1,v,uq).

(pqu)’“(—l)’“*lq(g) (P“)k(—l)kq(g)
pu . Zk21 (q?u)k _ EkZQ (qu)
—1)k— —1)k
1‘21@1 2t (@D . EkZO - (q))k :

[1}1]\1’(’()7 u) =

Notice that

And therefore the average of the end height of the first ageeds to

(p) 2 (Q)k Z 1—q"

X k>2 X k>2 i=1

(4.2)

This quantity appears in (4) in the form

’UIQ

T 2+ 20 (43)
h>0
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Furthermore,
puz
G ) ) = F ) ) )
(z,v,u) = vz (zvuq)l_z —
and
O(v,u) = vF(1,v,uq).
Also,

(pqu)* (~1)*4(5)
(Ploo 1 (u)k
And therefore the average of the initial height of the firgtead tends to

[0 ® (v, u) = F(1,0,uq) =

1 (k= DpF(=1kg) 1 PR &g 4.4
e e VI ) Dl 7P D v @
The version given in the paper (5) is
ST+ Dpg o). (4.5)
(P =5

5 Ascents: the weak model

We only collect the relevant formulae here:

puz puz F1) + pz(v — 1)F(uq),

F =
(u) l—qu 1—qu q(1 — qu)
pz)k (v—1)F—1
uzk21 (r )((qu)k)
Fzv,u) = @) (1R 1
L= 21 o
pzv pz
H =—F
(z,v,u) 0 —a0) (,z,v,uq)1 — 1 —qu
pU
V(v,u) = ——F(1,v,uq),
(v,u) 0 —a0) ( )
Gleyv ) = Flovug) 7= + 720

O(v,u) = EF(l, v, Uq).
q

Probabilistic Analysis

We will analyze the descents in the strict model with prolistii tools. We start from an infinite sequence
of geom(p) RVs.
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6 Markov chains

In this section, we consider the successive descents askWierain, related to initial and end values of each
descent.
Let

(i) = pg' ",
P(i) = Z ™
j>i
I, := beginning of thekth descent (initial height)

Ji := end of thekth descent (end height)
Iy > Jiy g1 2 Jgy I > 2.

By convention,J; is the firstgeom(p) RV. We have

Pl =iy, Jo = jo|Iy = i1, i = 1] = ) _ > m(k2) ... w(k)w(i2)m(j2),

120 j1<ka <<k <ig

with the conventions

l=0:13 =71,
l=1:iy> j1.
This is independent of,. Set
A(a7 b5t) = Z qk1++kt7
a<ky < <ky<b
and ,
N
Bla,b) =Y (—) Ala, b, t).
t>0 q
Then

Pl = ia, Jo = jo|J1 = j1] = [i2 = j1]7(j2) + B(j1,i2)7(i2)7(j2)-
But we know that
t
1 J+1 n+t
ko totke gn+(71Y) _
D P H )‘{t]'
0<ky <<k, <n =0

Therefore

A(a,b,t) == Z qk1+"'+k‘

a<ky<--<k¢<b

_ qat Z qk1+~~~+k,t

0<k1 < <ki<b—a

at b—a+t
4 b—a |
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We will use
Zat [m + t:| 1
>0 m ( )m+1
Then
B(a,b):=Y (B>tA(a b,t) (Pa—1
’ = \a P
and
Pl =2, J2 = j2|J1 = j1] = [iz = j1]7(j2) + %W(Zé)ﬂ(h)’ (6.1)
2
Plty = il = i) = T2 = (1 = =)+ Ea=tpg i o) (62)
2
The transition matrix betweeh andIs is given by
Pl =is)i =i1] = Y ") pip, — ol gy = o]
4L~ 1—P(ir)
1<ty
. . (i2) in—1 7(j1) (p)jl—l . in—1
- SEGA SLVANNYS NHE 1—q¢"77). 6.3
li2 <21]]1—P(i1)( @)+ Z TSP m(iz)(1—¢=7") (6.3)
J1<i1,j1 <1z
Let us first check thazi222 P[I; = is|I; = i1] = 1. We have, using (A.8)
11—1 —1 J1—1
pq” ia—1 pq (P)jr—1_ iy—1 ia—1
Z — g PR Gl )+Z Z 1— g1 (p)li pg= (1 —q=7)
o= 2 i2>2 j1 <i1,j1 <i2 2
= pg?!
— 2 1 10—1 i0—1
- ]__ql11 Z _ 11 1q2 +Z]__ql1 1 pq2 (1_(]2 )
i0=2 19= 2 i9>2
i1—1 pqgl 1 1 . 1 . 1
+Z Z e J;, pg” (1—=q¢*7")
1 212>J1 p L2
1 [1__i1171§:1p91721+ p 712:1]11J11
- 1—q731_1 p—q _ i1 T a4 1—q731_1 1—q“ 1 bq
i2=2 J1=2
=1.
Now we compute the stationary measu¢) of this matrix. (see, for instance, (3)). We have
. pg! i pe T (Pt i ,
P e e ED DL GV DI b e A (U AR B (8
i1 >12 1122 J1<i1,j1 <12 2
or, setting
: (i)
P(i) = —
) pg (1 —q )
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we have )
Z gt (i) + Z gt (i) Z pq’ 17]2 3)14 = Y(i2).
i1 >0 i1>2 J1<i1,j1 <12 Pliz

After some algebra, we will find thai(i) = constant is a solution of this equation. But it is probabilistically
obvious: the stationary distribution is proportionaptg—!(1 — ¢'~!). We have, setting) = 1,

. . . . . 1 & ,
Do Y e pthi(]z)gl, S=qt ™ > pd T ) d”
i1> 12 i1>2 1 <inogi iz Pliz Pz j=
) 1 m 1 2 v )
— ¢+ ——1a 3 D) — ——pag?> ()i, 3 2 (0,
(P)is m>0 (P)is v>0
=¢" + (P4 ) + 14" — (4o = 1,
as expected. (We used (A.5) twice.)
The stationary distribution is given by
. I1+q ;= i
fstationar)(z) = quq' 1(1 —4q 1)~ (6.4)

The stationary distribution generating function is givgn b

P*(1+q)2
(1—q2)(1—¢*2)
from which the stationary moments are easily derived:

G(z) =

2+¢q
E(I)= —2L
() =
E([2 @ +4¢%+5q+4
1= (1—¢?)?

The stationay distribution of the end value is given by

1 > , , . . .
8N pgn (1= g g (- g ) = (14 @)pg?e 2, p > 1,
q i1=12+1

which sums correctly ta.
Another transition matrix of interest is given by

PlJs = jol i = 1] = 7(2)lje < nl + Y @)J#W(Zé)ﬂ(jz) (6.5)
i22>7j1,i2> ]2

7 Descent distributions

In this section, we use the Markov chain derived in the prevgection to obtain the distribution of initial and
end values of first and second descents. For the first desdgaltvalue/;, for example, with (A.9), we have

i1
fi(i1) =PI = i1] = Z pg’* Pl = 1| Jo = jo]

Jjo=1
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=pg" (1 —¢" ) +qu” 1 pqil’l(l—qil’l)
Jjo=1

=pg"'(1—q¢"") (7.1)

1
(p)il .
A graph of f; (i), ¢ = 0.7 is given in Figure 1. It is easily checked that

0164  —
//
/
/
/
0149 / \
//’
/
//
012 / \

0.08

0.06

0.047

0.02+

Fig. 1: fi(i),q =0.7

Z f1(i) =
i=2

Indeed

S pg (1 - ql‘*)ﬁ ~ 1, by (A4)

i>2
A comparison betweef (i) and the stationary distributiofatonan(?), ¢ = 0.7 is given in Figure 2.
For the end height of the first descent, we have, with (A.9)@n0),

NG =Pl =n]= > pe” 'pg T+ Y qu” 1 “ = gt pgh

Jo>J1 i1>J1 jo=1 Zl
. 1 1
! { B } , (7.2)
(p)oo (p)jl

Of course) -, 71(j) = 1, by (A.10).
Note that we also have, with (A.10),

1 qul_l i1 1 1
fi(41) e VR — =pg T |~ — -
Z Z (p)iy 1 =gt (P)oo  (P)j

Jit+1 Ji+1
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0.18 7

0.16/

0.14

0.127

0.17

0.08

0.06

0.04

0.027

10 20

o . fl(l)

line : fstationar)(i)

Fig. 2. Comparison betweefi (i) and fsationan(%), ¢ = 0.7

The distribution of the second descéfy, J») is given by the square of the Markov matrix, i.e.

V2(iz, J2) = Z pg ! ZP[J1 = jilJo = Jo|P[I2 = iz, J2 = jo|J1 = ju],

Jo=1 J1

The distribution of the next descents is related to suceeggiwers of the transition matrix.
A compact form fory, (ia, j2) is given below.
Now, the distribution of the initial value of th@econddescents is given by (we use (A.3), (A.9))

fa(iz) =PIz = is] E fl)PI = is|h =] = > pg" (1 - qilfl)(p —P[l = is|I1 = i1]
i1=2 i1=2 i1
. . 1 pqi2*1 .
7 1 7 1 7 1
=> pg M 1—g" ——— 1 =q"7)
i1 >0 (p)u 1- q -1
. o 1 P (D)1 iy -1
+ ) pgt =g > — pg= (1 —¢” )
= Wi, o, L a7t (P
) . 1 1
19—1 19—1
=pg>t(1— ¢ - [ ' _1]
( )(p)iﬁ(l —pg71) | (Pg?)oo
10— 1 1
+pg2 (1 — g2 p) E pd T (p)j 1 Y, pq" 1 :
12 Z1

Ji=1 i1>71

13
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ia—1(7 _ ia—1 1 L
B P e [(m@ 1]

12

, 1 1
12—1 _ 12 1 J1— 1 _
+pg> (1 o qu — qh - [( pr 1]
1

=pg* (1 —q"7) (P)is [(pqi) - 1}

. 1 1 1
i2—1(1 _ lz 1 Jji—1 _
e ()i Jz_:lpq [ (Pg oo 1 —pqﬁ_l}

) . 1 1
:png—l(l_ng—l) |:— _ :|
(P)oo (p)iz
i2—1 ig—1
+p2ql271(1_q12 1 qul 2 12 1(1_ 7,2 1 Z
(p o 2 Fo Ol—pcﬂ1
) ) 1 1
ig—1 ig—1
=pg® (1—¢"7") - }
p)OO (p)iz
+ i2—1(1 12— 1) 1 [1 () ] 2 io 1(1 72 1) = qJ1
pq —q - i pq
(P):z ’ (P)i =, 1 = pa”

Note that this gives an explicit expression fa(is, j2):

Y2 (i2, j2) = fz(iz)%~

A comparison betweelf, (i) and fstationanf?), ¢ = 0.7 is given in Figure 3. The convergence to the stationary

distribution is quite fast.
Let us check tha} .-, f2(i) = 1. We have, using (A.8) and (A.1)

i pg 11— Y 1 [ 1 _1] P2 (1= ¢ Y 1 S ¢ ‘
P (P)i L(P)oo (P)i =, 1 = pg"
1 (1 =g~ 1 =1 -1 1
I S R I
(p)oo ji>1 qu i>j1+1 (p z>2 (p)l
]_ q]l q]l 9 1 1
- —1- 2 : - S =1
(P)oo 27 L=pg7 pp);, | 1-pp

Jjizl

8 The moments of descent parameters

The first moments of the first and second descents initialegalire analyzed here by intensive use of some
combinatorial identities.
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0.18
0.16 4/
0.14 \
0.12 \

0.1
0.08
0.06
0.04

0.027

0% 4 6 8 10 12 14 16 18 20

o . fg(l)

line : fstationar)(i)

Fig. 3: Comparison betweef (i) and fsationan(?), ¢ = 0.7

We derive the mean of the initial value of the first desdent

B(L) = fu@i= 3 pa (1 - g 1)~
=2

i>2 ()i

i1, 2i—1; i
q 1 q ? i
— — + 1- 8.1
P em P TP ) &)
1—1; 2i—1,
gt >t
= — + 1 by (A.4).
p; (pq)i p; (rq)i y(A4)

This is Theorem 3 in (5). However, we want to show now indegeatlgt that this coincides with closed form
obtained earlier as (3.4).

q N[
E(f) —pl>0 D (1—-¢")(@+1)
_ ~ i
_pg,;)@)m(l q')
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S o S o e o S
= Pn =3 (pqh“z q = P 5 (pg" )i

ISl k]

Now use (A.3):

)

b __ — +1-
T b () pq

(]
:

i

We need also this (use(A.1)):

v

= (a1 pe®* (pg" e pg*h pghTt

We now plug these two result in:

7 2h 21
P q P q q
E(I) = -=
,;;; Z:O (pa" )i a5 a)n g (pg" 1)
P [ 1 1 ] P " [ 1 1 1 1 }
= +1—— | —= - — +1
,;) n [pg" (pg" ) oo pa"]  a =5 (0Dn Lpa?" (pg" oo pg®* pgtt
p I 1 h 1} p 1 { 1 1 qh+1 + 2h,:|
== === - == q
4 = (p)n Lp(pg"*") ¢ 1= (0n [p(pg" e P p
P 1 r qh+1
_p ¢+ —
q 1=4 Pa)n P
p I h 2h:| qh’
== ¢ —q"| +
q % (pa)n | };} (Pg)n
h 2h h
P q P q q
== - = +
q hz;; ()« hz;; (P@)n hzz:o (Pa)n
_ 1 qh P Z q2h
q =5 P a =5 (POn
:1[ 1 _1]_£F_i__l_g+q
q L p(pq)os pl alp(P p P
:1[ ¢4 %]
qlp(Pd)ss P
! 1
PP P
Since ) )
q q
——42=1-12 ,
P(PPe P P PP

we established the formula (3.4)
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More generally higher moments are given by

E(If) = pd" (1= ¢")(h+ 1)+ 21: P () P (1= g

h>1

i1=2 jo=1

(p)il

&
i7.

Let us look at the modified second momentipfagain we use (A.3), (A.1) for simplifications):

oo

EE =Y fi(i)ili +1)/2=pY_ —(1—q)i +1)(i +2)/2
i—o i>0 (P)it1
q i
0<k<hish \PJi+1
1 " p "
1 0<rzn (Pa)n  q 0<k<h (Pa)n
B 1 qk qh P q2k Z q2h
g k+1), g k+1
q =5 e (= (0d" e a5 (00 5 (Pd")n
1 Z q" 1 1 } P g%k { 1 1 1 1
g E(pak+1 k|l o 2k (pgk+1) _ pa2k  pgk—1
q =5 (P2 Lpa* (pg**t) pa*] a5 (pa)k Lpa®® (pa" e pa®* pg
1 1 1 k } 1 1 [ 1 k+1 Qk]
== A B L—q¢"™ +pq
k+1 k+1
q =5 (pa)i Lp(pg*+t) p) 4z (ea)k L(pa™)
1 1 1 k 1 k+1 2k:|
=- ¢ — ==y tlta Pq
q ,%% (Pa)x Lp(pg"*) P (Pg")s
1 1 q q
=—Z( " | 5 ——+qk(1+Q)—pq2’“]
q =5 (pa)x Lp(pg p
_12 1 1 1}_’_14—q ¢ p q**
- k+1 o T, T,
P =5 (pa)w L(pg™+h) ¢ e a5 e
_12' 1 1 } 1+q{ 1 ) 1 p[l 1 1 a4
P L(pd)o POk ¢ [p(Pg)eo rl qlp(PDe P P
1 5 1 1 } L2 g2
P LPd)os (O] P(PG)oo p
11 tF 2 2
= —lim — + +3—--.
Pi=11(Poo 1=t = (p@)r]  P(P2)oo p
To compute this limit, we use (A.7):
1 t ]
lim [ —— = Y ——
=1 [(pQ)oo 1—t 2 (Pa)x

k>0

17



18 Guy Louchard and Helmut Prodinger

ST R SR S ) <p>m(t>mqm]
=1 () 1=t (P2t 2= (@)

i @x (@) (p>m<t>mqm}
=1 (0o 1=t (PDoc(t)oe (PDoo(t)oe 2= (@)

= lim 1 1 _ (@)oo ] (@) (P)m(@)m-19
t—1 _(pQ)oo 1—-t (pQ)oo(l - t)(qt)oo (pQ)oo(Q)oo m>1 (Q)m

IS R B S ) 1 (P)m(@D)m-19"

" 0w I T= T T DD } (Pq)os m%:l (@m

_ 1 lim (@) — (@) 1 Z(p)m(q)mflqm

(P@)oo t=1 (L =1)(at)oe  (PD)os 2= (@)m
1 (@], (-1 1 (D) (@14
o O e Gom 2 (@

_;i _ 1 (p)m(Q)mflqm
G &~ T 2

_ 1 ¢ 1 (P)mq™

= mzz:l 1—gm

L [1- Ot

(PO)ee &7 1-4

So finally:

1 1- k 2
EE — Z [ (P)lz]q T 132
PP = 10" oo

From this, the variance can we stated as:
9EE — 2E(I,) — E*(I).

Now we turn to the second descent. The mE4h) of the initial value of the second descent is given by
(we use (3.4))

m):im‘)i: o= }Zq R TR S, 11—qi-1>@§1_q;qj
:p[ﬁ—l}gm)( Z W;m)qia—qi)@%ﬂ
- o= -5 o) ‘pg i pqpqa 2+ 1= ) e
o B e o B D e e g
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The last inner sum can be computed:

. ; 1
S e oy (e
0<i<j Pi+1 0<i<j 0<h<i p i+l
- T - ¥ &
0<h<i<j (P)is1 O<h<i<j ()it
%i+2h
- ¥ SO IND D
0<h<j 0<i<j— h (Pisnir 0<h<j0<i<j—h P/ith+tl
2h 2%
=Y A= Y Y = Y
- h+1 h+1
o Phher = (0d" )i (G (Phnr =, (pg" )

We do two auxiliary calculation (with (A.3)):

q
S1i= D po
+1).
0<i<I (pq )i
q
- Z h+1 Z h+1
< (pg &7 g™+
1 1 I 7
= h(phtl L= — = Z+1 Z hj]-I+1
pq"(pg" ) oo pg"  (pg" )1 2 (pg" )
B 1 1 q [ o 1
g (pg" ) pg"  (pg" V)1 [pg"H (pgh ) o pghtt
_ 1 q’ 1
pg"  (pg" )1 pgt(pg"ti)r
and with (A.1):
2%
q
Spi= ) T
+1).
0<i<I (pq )i
27
q

- Z h+1 - Z h+1).
= (pg =7 (pa"*1);

_ 1 1 1 N ) qQI Z q2i
pa*"(pa" s Pt pgtTt (pg" 1)1 2 (pg" 1),

_ 1 1 L 7 { 1 1 1
pq2h(pqh+1)oo pq2h pthl (pthrl)I pq2h+21(pqh+1+1)oo pq2h+21 pthrIfl
B 1 B 1 N ) N 1 N qI B q21

pg?h pgh—t p?h(pg" ) pd"L(pg" ) (pg"tY)r

19

+1
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Therefore

B q ¢ q N
S0 = ; 727 (pg"*1); 2 (p) 2 (pg" 1)

0<h<j
2h 1 1 1 qj—h q2(j—h)
- Z {_ ST s e iy LI S T (pghtt
oS, Pt L pa®" pa pa** (pg" ) j—n  pa"Hpg"*)jn (pg")j-n
R o e o]
= - - +
0T L@t p@rsr ()i P(P)j
1 h+1 2h 1 j+1 2j
B [_ S Lt
oge; Lo p@har p@hrr Pl p0)j41 PP (P
_ { q" ¢ " U ]
= - - + :
@ PP Panr - (P)in

Recalling the expressions f6f andS; that we just derived, we get

h 2h J
So= 2 [ T ]‘ Do s

oGt Lpaa)n  alpg)n] PP (P)yn

1 1 ¢ 1 1[ 2 1 gt ¥ J¢ jq*
=—l--- 4 —— | = | - = — - =

Pq p  (p9); p9);] «q p  plpg);  pee); @il p®i+1 ()i

1 1 ¢ 1 2 1 ¢ il i¢ il
== + = +- - - + -

pq  p*q¢ pqlpe);  p?alpe); P palpe);  p(pa);  a(p);  p(P)ir1  (P)i+1
2 1 ¢  (Q+q¢ & j¢ ja*

p > pP()jrr pap)i+v1 ) pP)i+1 (P)j+1

Therefore we found a first expression for the mean:

m:;[@—l—z%} Pp—Hﬁ}

L1 q p(A+q)¢ | p*¢¥  pi¢ jp?qu]
- + - +
p >0 ()j+1 a(p)j+1 q(p)i  (Pirr (Pin

=1{% [ 5]

)
1+ 7 2 29 -7 - 227
e _pA+tad  pa?  pid | gra

pg’
t ;1—qu |:pj+1 (Poe  a@j+1  a®); P+ P+

{1+
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“slo ]

1 J 1+q)¢ 1d 1
+Z_92 Pq [(pq q p(1+q)q Pjq Jpq ]Jr]_j pPq*

j>01_qu

The last sum can be simplified; we will use Heine with pg", a = 0,¢c = ¢, b = ¢:

31

& (9)2 (" )m(@*)m
2 (pa"t) (") Z (q o

i>0 m>0
(9)2 )oo q m
- h+1 Z )
(Pg"*")oo =
1—pqg" 1 m
= (pq™)

1—q3 m>0 (q4)m

— pah .
_ (1—-pg")(q)s Z (5 (pg")™

h)3
(pa")* = (Dm

_ (1 —pd")(@)s [ L o (")
(pg")? (Pg") o (9)2
_ (9)s 1 (=pd")(9)s (Q=pd")(g9)s (1 -pg")1-¢*
(pg")? (pg" 1) oo g3t it pgh '

From this we derive (sét = —1)

Z P’ q _ 3[ (@)s 1 (A-p/a@s (1-p/0)(q)s (1—p/q)(1—q3)}
( )

S a L(0/0)* () piq? piq? P/
P [(q)sq3 1 ¢@a-p)@)s ala—p)0)s (¢—p)(1— q“‘)}
ql P (P P p? p
2 2 _ _ .3
= ((q;)i — 4lg - P){a)s — (g p)(g)s — 21 p;(l )
Hence
_1 _ _7
2= g1 Pt g
1 rg’ g g  p+qd]| 1= jpie¥
T Z% 1—pg/ [(p)j-H (Ploo  a(p)jt } p Z;) (P)j+1

—qlg—p)(@)3s — (¢ —p)(q)3 —

)j+1 (p)oo_ qa(p)j+1 _(p)j+1 (P)j+1 BOQ(p);H'

21
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We still need (we usé)

320
2 2
- = (pq)h+1 ; (pq%“)
& (pq)2hh+1 [_ pql?h - pq}l‘*l ! pq%(pflzh“) }
B _zl) = (p)i+1 [1 - (pqhil)oo} - %DO (pgl:“ i h%:o (pq)i:l
:piqhzo[ﬁ_@] ‘H@“‘ﬂ +é[p(p31)oo ___QH]
- e 2 S Rt R o AR
hence
SO | -
+zl9 1 fq;qj {(p)(jﬂ - (pc)]oo - pizl(;;;i)f j]
Jj=0
S T ene )l e
e R

Although this computation was already quite involved, waldayet all cross-moments from (6.3), but only
with considerable effort.

9 Markov Chains and Sojourn times

In this section, we obtain the asymptotic distribution & ttumber of descents initial values in some interval.

9.1 General asymptotic distribution

Let X;,7 = 1,...,m be an ergodic Markov chain (MC) antl be a subset of states. Assume that the MC is
stationary and set; := [X; € A], with M := E(x;). The numbetD of times the MCisinAon1,...,mis
such that

E(D) = mM,
m m—1 m

V(D):E{Z(xi—M)Q—i—ZZ 42 (zi — M) (z; — M)]|.
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If
El(zi — M)(z; — M)] =0, j=i+2,
then, settingB := E(z;x;+1), we obtain
V(D) =mM(1 — M) +2(m— 1)(B — M?).
But we have a central limit theorem for MC (again, see (3))s™ives
D —E(D)

D) ~N(0,1), m — oc.

9.2 Number of descents values in some interval

Here, the states of the MC are coup!g¥;.; with geometric distribution. Also the MC starts with thetgia-
ary distributionpg®'pg?—1, hencen = n — 1.

If we are interested in the asymptotic (gaussian) distidioudf the number of descents initial values in some
interval [, T + A], we compute

T4+A
M=> pg ' (1—-q¢"),

T+A i—1
B= > pg 'Y pd(1—-¢7h).
i=7+1 j=T

Of course, an explicit formula could be written fbf resp.B.

10 Permutations

Starting fromn geom(p) RVs, asg — 1, we can derive the asymptotic properties of first and secesdenhts,

in a large permutation. We will consider large size-G oc) permutations of 1, ...,n}, or n-permutations

for short. It is well known that all rank statistics of aspermutation can be derived from the corresponding
ones of a sequence afgeom(p) RVs asq — 1. But, of course, it is not possible to deduce the moments of
the beginning (initial height) of the first descent ofigpermutation from the corresponding moments of the
geometric variables statistic, gs— 1. However, the asymptotidistribution of this RV can be derived as
follows. Letq = 1 — ¢. This gives an asymptotic distribution function for eaggom RV K (¢ — 0)

1—q¢'~F(i)=1—¢"",

SetU = F(K); U is asymptotically distributed as aniform[0, 1] RV. Let us considen geom(p) RVs
Ky,...,K,. If we scale the correspondirig variables withn (i.e. multiply by n), take the integer part,
we have asymptotically a permutation anfor largen. More precisely the rank d/; is the value of théth
element of the permutation. This gives

u=1—-e* du=c(l—u)di, i=—In(l—u)/e.

Setg(u) := f1(7) as given by (7.1). Using geometric RVs instead of an infinite sequence of ones inesluc
only an exponentially small error.
For instance, this leads to
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We have by simple algebra,
glu) ~e(1 —uw)u+ e u(l —e “)e(l —u),

and the asymptotic density &f /» is given by (we multiply bydi = du/(e(1 — w)))

o0

PlUL <Us <---<U; <Ujy1 > Ujpo] = u—.

Again, asn is large, we can use an infinite summationjomith exponentially small error.
Note that

1
/ hi(u)du = 1,
0
as expected, and
1
E(l) ~ n/ hi(w)udu = n(e —2) :=nEy9, n— oo,
0

which conforms to Theorem 9 of (5). All moments can be derivaat instance

E(I7) ~ n? /1 hy(w)uPdu = n?(6 — 2¢) := n*Fa ,
E(I3) ~ n3E20 with B3 g = 9e — 24.
A general expression can be derived as follows. We have (aettie second index)
Ey=e— (k+1)Ey_1, Eop=1.

This first order recursion can be solved by iteration:

Ep = (k+1)(=1)* [e GO

k i

(=D 1} . (10.1)
=1
By conventionF_; = fol eldu =e— 1.

We could derive similar expressions fdy.

The errors terms, as — oo can be derived as follows. The rat#kof U;4, is such thatR — (j + 2) is
Binomial(n — (j + 2), w), if U;+1 has value; and corresponds to the first descent. Indge@jues are already
beloww (on the left) and one on the right. dfvalues among the — (j + 2) remaining ones are below then
U,+1 possesses the radkt j + 2. So the moments aR/n are given by the characteristic function

from which we derive

B(R/nlj) ~ut —2 U2,
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We multiply byul;—f, and sum on; this gives

> WSE(R ) ~ (g~ DD,
Jj=0 )

n

Sl ) g D)

: n
Jj=0

Hence, integrating on € [0..1], we finally obtain

e—2
E(Il/n) ~ ELO =+ n 5

20 —Te
E(I7/n?) ~ Bapo + —

The first expression fits with Theorem 9 in (5); the second nmawasn’t computed in this paper.
The joint moments of the first and second desdeni, are asymptotically computed as follows. First, from
(6.3),

min(ui,uz)
Uo dvy 1—wv . _
1(ug,uy) = uQ<u1£1—u2——|—/ € e eug(l — us

= [uz < u1]e(1 — uz)% + e“%euq 42 (1 — e~ min(usuz)y,

Uq (5%
This leads to the Markov kernel
g1 (uQ, ul) U2 1 1 —min(u1,u2)
h(us, S S0 etk Bt 2 < = 2940 — (1 — U2 10.2
(uz2,u1) (=) [uz < ui] ” + e"?uqy o (1—e ) (10.2)

This can also be derived from thiiform|0, 1] random variables properties.
The joint moment is asymptotically given given hyEy ;, with

11
By, =/ / R (ur)h(ug, wy )ukubduy dus
o Jo

1 1
1 o
z/ ule“’l/ ulub,— |:[['U,2 < upJlug + e"2uy(1 — e” ™)) | gy dug.
0 0 U1

The first values of;, ; are given in Table 1.
The asymptotic density dk /n is given by

1
ha(u) = / hy(up)h(u, uy)duy = ule*™™ — ue® — e*] = ue"[~1 — u + e,
0
and similarly forhs (). This gives eventually

hs(u) = /0 ha(ug)h(uz, ug)dus = ue™[(u + u?/2) + e(—u — 2) + €.
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o 1 2
0 1 eZ—e—4 —2e? —e+ 18
1 | e-2  —7e/2+10 20e — 54
2 | 6—-2 €2+32/3—-36 —2e%—235¢/3+228
Tab. 1: Ek,l
2.5
2 AOOO s
1.59 /}VDE/@VED%
I e
nﬂ/dailonkﬁk
05 {{ﬁﬁ
0 0.4 0.6 08 1
o hi(u)
O hg(u)
line : h(u)

Fig. 4: h(u), hi(u), ha(u)

The convergence to the stationary distributfofx) = 2w is very fast. h(u) can be derived from (6.4), or
directly by considering two successive RVg. Figure 4 givesi(u), hy(u), ha(u)

The differencéis(u) — h(u) is given in Figure 5.

A general expression fdr; (u) can be computed as follows: we observe thdt:) is of the form

1—1
hi(u) = ue" Z ekPi,k(u),
k=0

where

(2

Pi,k:(u) -

1
P(i, k, Dul.

—k—
=0

But, settingE; := D; o + D; 1e, from (10.2) and (10.1),

h(u) = /0 hi 1 (u)h(u, v)dv
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0.004 -

0.002
u
02 04 0,6 08 1

\
0.002 \
’ \
\
~0.004 \\/

Fig. 5: hg(u) — h(u)
1 1 .
= / hi—1(v)— [[[u < vfu+ e u(l —e” mm(”’“))} dv
0 v
“ 1 /I —v ! 1 !
= hi—i(v)—e*u(l —e ")dv+ [ hi—1(v)—€e“udv
0 v u v
! 1 u 1, _
= hi—1(v)—e“udv — hi—1(v)—e“ue " dv
0 v 0 v
i—2 1 i—2 u
e"u [Z ek/ Py ;(v)e’dv — Zek/ Pil’k(v)dvl
k=0 V0 k=0 V0

-2 k-2 -2 k-2 L
_ o u k ) _ k )
=c"u lze Z Py ki[Di—1,0 + Di—1,1€] Ze P 1k, 1
k=0  1=0 k=0  1=0
This leads to the following recurrence
Piiq(u) =1,
i—2
Pioo= ZPi—l,O,lDl—l,O;
1=0
i—k—2 i—k—1
Piro= Z P kiDj—10+ Z Py p1,Di—11, k=1,...,1—2,
1=0 1=0
Pipi=—P1pi1fl, k=0,...i—21=1, .. i—k-L

Finally, asymptotically, givedy, Ji is uniform[1 ... I — 1].

27
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The number of descents valuesig: in some intervalr, 7 + A] is now related to

T4+A
M:/

T+A Ul
B:/ dul/ UQdUQ.
11 Conclusion

In this paper, we have made a combinatorial and probabikstidy of initial and end heights of first, second,
..descents in samples of geometrically distributed remdariables and in permutations. Several other (simi-
lar) models can be analyzed with our tools, let us mentiomwibak model and/or ascents with the probabilistic
approachk-descents, sizé or more descents, (see (2)), last descents, (see:fdpcents with a combinatorial
approach (see (2)), etc.
We leave these topics to future work (or to the interestedeBain order to keep the length of the paper
within reasonable limits.

Appendix

A Some combinatorial identities

We will use intensively Heine’s formula:

(@)m(0)mt™  (b)oo atOO ) (
2 (@m(m (oo Z

m>0 m

m

Severalj-combinatorial relations are deduced from Heine.

pz Z = [@ 1} — ¢. Thisis Thm.1in (5). (A.1)
Z (p2)mq™ = ]%[1 — (p2)oo]. This is (5) in (5). (A.2)
m>0

pz Z (pzq)m =1 1pz [(pqi) — 1} . This is implicitly used in (5). (A.3)
m>1 m+1 - o0
Heine witht = ¢, a = 0,b = q, ¢ = pzq, and (A.2)
3 % — 1. Application of (A.3), (A.1). (A.4)
m>1 m+1
am L {y _Ll=p %} isis (6) i
> (p2)m®™ = ToE [1 (p2) oo PR . This is (6) in (5). (A.5)

m>0
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(p)j-1 Z
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