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In words, generated by independent geometrically distributed random variables, we study thelth descent, which is, roughly
speaking, thelth occurrence of a neighbouring pairab with a > b. The valuea is called the initial height, andb the end
height. We study these two random variables (and some similar ones) by combinatorial and probabilistic tools.

1 Introduction
LetX be a random variable (RV), distributed according to the geometric distribution with parameterp (geom(p)):
P(X = k) = pqk−1, with q = 1 − p. We consider a sequenceX1X2 . . . Xn of independent RVs. We also
speak aboutwordsa1 . . . an; there is some interest of combinatorial parameters of suchwords, generated by
independent geometric random variables. In this paper we continue the study ofdescents.

In a wordw1abw2 we say thatab is thelth descent, ifa > b (strict model) ora ≥ b (weak model), and the
initial wordw1a hasl − 1 descents. Furthermore, we refer toa as theinitial heightand tob as theend height.
Equivalently, we use the notions initial value and end value.

In (5), these random variables where studied, but only forl = 1, i.e., thefirst descent. Here, we are able to
deal with the general case.

This paper uses a generating functions approach and a probabilistic approach. The results complement each
other, but are not disjoint. Of course, both are very useful and interesting.

The generating function approach is as follows: First, we construct a generating functionF (z, v, u) in 3
variables,z, v, u, wherez marks the length of the word,v the number of descents, andu the last letter of the
word. In other words,

F (z, v, u) =
∑

n,j≥1, l≥0

P[a word of lengthn hasl descents and last letterj].
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Occasionally, it is clearer to writeF (u) only.
Once this is achieved, we construct a new generating function (G for initial height,H for end height), by

attaching a descent (which is a simple substitution, since the variableu “remembers” the last letter) and an
arbitrary rest. In this way, we have a generating function, where the variableu no longer codes the last letter,
but the initial height (resp. end height) of thelth descent.

The quantities that we get forl = 1 coincide (of course!) with the older paper; however, they come out in
different forms. To show formally that they are the same, oneuses identities fromq-analysis, such asHeine’s
transformation formula.This was demonstrated extensively in (5).

We also consider the analogous questions forascents;the motivation is that, in (4), thelast descent was
studied. In the reversed word, the last descent becomes thefirst ascent, and now we have developed the
machinery to deal in general with thelth ascent.

The probabilistic approach works as follows. We start from an infinite sequence of geometric random vari-
ables, with parameterp (geom(p)). First, we consider the successive descents as a Markov chain, related to
initial and end values of each descent. Next, we use this Markov chain to obtain the distribution of initial and
end values of first and second descents. Then, the first moments of the first and second descents initial values
are analyzed by intensive use of some combinatorial identities. Next, we obtain the asymptotic distribution of
the number of descents initial values in some interval. Finally, starting fromn geom(p) RV, asq → 1, we can
derive the asymptotic properties of first and second descents, in a large permutation.

In this part, only the strict model and the descents will be considered.
The explicit forms of the distribution of the descents become very complicated when going from first to

second etc. descent. However, a stationary distribution, which is very simple, is rapidly approached. It is given
by

1 + q

q
pqi−1(1 − qi−1)

for the initial height, and by
1 + q

q
pq2i−1

for the end height. There is an intuitive explanation of them: The first one is the conditional probability that
we have a pairij, given that it is a descent, and the second one that we have a pair ji, again given that it is a
descent.

Several useful combinatorial identities, derived fromHeine’s formula, are given in the Appendix.

We will need notation fromq-analysis; the most important ones are(x)n := (1−x)(1−qx) . . . (1−xqn−1),
and

[

n
k

]

= (q)n

(q)k(q)n−k
(Gaussian coefficients). The relevant formulæ can be found in (1).

Combinatorial Analysis
2 Descents: the weak model
Let fi(u) be the generating function with[znuj ]fi(u) is the probability that a word of lengthn ≥ 1 hasi
descents, and that the last letter isj. (Only the dependency on the variableu has been made explicit.)
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Here is the recursion fori ≥ 1.

fi(u) =
puz

1 − qu
fi−1(1) −

puz

1 − qu
fi−1(uq) +

puz

1 − qu
fi(uq).

Now let
F (u) = F (z, v, u) =

∑

i≥0

fi(u)v
i.

Then we get, by summing up,

F (u) − f0(u) =
puvz

1 − qu
F (1) −

puvz

1 − qu
F (uq) +

puz

1 − qu
F (uq) −

puz

1 − qu
f0(uq).

But
f0(u) =

puz

1 − qu
+

puz

1 − qu
f0(uq)

and so

F (u) =
puz

1 − qu
+

puvz

1 − qu
F (1) +

puz(1 − v)

1 − qu
F (uq).

This functional equation can be solved by iterating it:

F (z, v, u) =

∑

k≥1
(puz)k(1−v)kq(

k
2)

(qu)k

1 − v
∑

k≥0
(pz)k(1−v)kq(

k
2)

(q)k

. (2.1)

Now we turn to the end heights. As indicated already, we make one down step, record its height with the
u-variable, and then attach anything (1/(1 − z)). This gives the generating function

H(z, v, u) =
puvz

1 − qu
[F (z, v, 1) − F (z, v, uq)]

1

1 − z
+

pzu

1 − qu
.

The next step is to look at the behaviour forn → ∞. Intuitively, it is quite clear, there should be a limit,
since what happens at thelth descent must become independent of letters very far to theright. Indeed, we see
that there is a simple pole atz = 1, and the generating function

Ψ(v, u) =
puv

1 − qu
[F (1, v, 1) − F (1, v, uq)],

that is obtained fromH(z, v, u) by dropping the factor1/(1−z), and the irrelevant additive term and replacing
z = 1, contains all the information. The coefficient ofvl is a probability generating function in the variableu
alone. Indeed, it is easy to check thatΨ(v, 1) = v

1−v . Explicit expressions become very messy, but at least the
instancel = 1 (which was studied in (5)) is manageable:

[v1]Ψ(v, u) =
pu

1 − qu
[F (1, 0, 1) − F (1, 0, uq)]

=
pu

1 − qu

[

∑

k≥1

pkq(
k

2)

(q)k
−

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

]

.



4 Guy Louchard and Helmut Prodinger

All moments can be derived from this by differentiations. Let us just do this for the average (first moment):

E[first descent] ∼
1

p
−

∂

∂u

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

∣

∣

∣

∣

u=1

∼
1

p
−

∑

k≥1

k(pq)kq(
k

2)

(q2)k
+

∑

k≥1

(pq)kq(
k

2)

(q2)k

k+1
∑

i=2

qi

1 − qi

∼
1

p
−

∑

k≥2

(k − 1)pkq(
k

2)

(q)k
−

∑

k≥2

pkq(
k

2)

(q)k

k
∑

i=2

qi

1 − qi
. (2.2)

Note that this average was given as

1

p
−

∑

h≥0

(h+ 1)pq2h+1(−p)h (2.3)

in (5).
For the limiting behaviour of this, asq → 1, we should consider, in order to get a meaningful result,

limq→1(1 − q)E[first descent], which evaluates to

1 −
∑

k≥1

1

k!

k
∑

i=2

1

i
= 1 −

∑

k≥1

Hk

k!
+

∑

k≥1

1

k!
= e−

∑

k≥1

Hk

k!
.

A similar compution can be done forgenerall, and the resulting generating function is

v −
1

1 − v
+

1

1 − ve1−v
−

v

1 − ve1−v

∑

k≥1

Hk(1 − v)k−1

k!
.

(the coefficient ofv1 is the previous expression).

Now we turn to theinitial heights.The same approach applies, but the substitution is even simpler. We get

G(z, u, v) = vz[F (z, v, u)− F (z, v, uq)]
1

1 − z
+

pzu

1 − qu
.

The limit forn→ ∞ leads then to the generating function

Φ(v, u) = v[F (1, v, u) − F (1, v, uq)].

Let us compute again the instancel = 1; the coefficient ofv1 is particularly simple:

[v1]Φ(v, u) = F (1, 0, u)− F (1, 0, uq).

From this, we find that the average is asymptotic to

∂

∂u

[

∑

k≥1

(pu)kq(
k

2)

(qu)k
−

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

]
∣

∣

∣

∣

u=1

. (2.4)
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This checks with the expression

∑

h≥0

(h+ 1)pqh+1(−p)h −
∑

h≥0

(2h+ 1)pqh+1(−p)h, (2.5)

given in (5).
For the limit limq→1(1 − q)E[first descent] we get the generating function

1

v(1 − ve1−v)
−

1

v(1 − v)
−

v

1 − ve1−v

∑

k≥1

Hk(1 − v)k−1

k!
.

The coefficient ofv in this is

e− 1 −
∑

k≥1

Hk

k!
.

3 Descents: the strict model
Computations are similar; we only give the key steps. The functional equation is

F (u) =
puz

1 − qu
+

puvz

1 − qu
F (1) +

pz(1 − v)

q(1 − qu)
F (uq).

Thus

F (z, v, u) = u
∑

k≥1

(pz)k(1 − v)k−1

(uq)k

(

1 + vF (z, v, 1)
)

=
u

∑

k≥1
(pz)k(1−v)k

(uq)k

1 − v
∑

k≥0
(pz)k(1−v)k

(q)k

. (3.1)

Also,

H(z, v, u) =

[

puvz

1 − qu
F (z, v, 1) −

pvz

q(1 − qu)
F (z, v, uq)

]

1

1 − z
+

pzu

1 − qu
.

Hence
Ψ(v, u) =

puv

1 − qu
F (1, v, 1) −

pv

q(1 − qu)
F (1, v, uq).

And

[v1]Ψ(v, u) =
pu

1 − qu
F (1, 0, 1)−

p

q(1 − qu)
F (1, 0, uq)

=
pu

1 − qu

∑

k≥1

pk

(q)k
−

pu

1 − qu

∑

k≥1

pk

(uq2)k
.

The expectation can be obtained by differentiation, followed byu = 1:

1

p
−

∑

k≥1

pk

(q)k

k
∑

i=2

qi

1 − qi
. (3.2)

The formula given in (5) is
1

p
−

∑

h≥1

hq2h−1

(pq)h
. (3.3)
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Now, let us compute the limit of(1 − q)E:

1 −
∑

k≥1

Hk − 1

k!
= e−

∑

k≥1

Hk

k!
.

And in general:

1

1 − ve1−v
−

1

1 − v
−

v

1 − ve1−v

∑

k≥2

Hk(1 − v)k−1

k!
.

Now, for the initial heights, we must consider

G(z, v, u) = vz[F (z, v, u)−
1

q
F (z, v, qu)]

1

1 − z
+

pz

1 − qu
,

and

Φ(v, u) = v[F (1, v, u) − 1
qF (1, v, qu)].

Furthermore, to look at the first decent,

[v1]Φ(v, u) = F (1, 0, u)− 1
qF (1, 0, qu) = u

∑

k≥1

pk

(qu)k
− u

∑

k≥1

pk

(q2u)k
.

From this, the average, obtained by differentiation, is

1+
∑

k≥1

pk

(q)k

k
∑

i=1

qi

1 − qi
−

∑

k≥1

pk

(q2)k

k+1
∑

i=2

qi

1 − qi

= 1 +
∑

k≥1

pk

(q)k

k
∑

i=1

qi

1 − qi
−

∑

k≥2

pk

(q)k

k
∑

i=2

qi

1 − qi

= 1 +
q

p

∑

k≥1

pk

(q)k

= 1 +
q

p

(

− 1 +
1

(p)∞

)

. (3.4)

The last simplification was by (A.6). The version given in (5)is

1 +
∑

h≥1

hpqh−1

(pq)h
−

∑

h≥1

hpq2h−1

(pq)h
. (3.5)

The limiting functionlimq→1(1 − q)E is

v

1 − ve1−v

[

∑

k≥1

(1 − v)kHk

k!
−

∑

k≥1

(1 − v)k(Hk+1 − 1)

(k + 1)!

]

.
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4 Ascents: the strict model
First, we consider the case where onlya < b is an ascent.

Again, the treatment is very similar to before, so we only give the key steps.
Let fi(u) be the generating function with[znuj]fi(u) is the probability that a word of lengthn ≥ 1 hasi

ascents, and that the last letter isj.
Here is the recursion fori ≥ 1:

fi(u) =
puz

1 − qu
fi(1) −

puz

1 − qu
fi(uq) +

puz

1 − qu
fi−1(uq).

Now let
F (u) = F (z, v, u) =

∑

i≥0

fi(u)v
i.

Then we get

F (u) =
puz

1 − qu
+

puz

1 − qu
F (1) +

puz(v − 1)

1 − qu
F (uq).

This functional equation can be solved by iterating it:

F (z, v, u) =

∑

k≥1
(puz)k(v−1)k−1q(

k
2)

(qu)k

1 −
∑

k≥1
(pz)k(v−1)k−1q(

k
2)

(q)k

. (4.1)

Further,

H(z, v, u) =
puzv

1 − qu
F (z, v, uq)

1

1 − z
+

puz

1 − qu
,

and
Ψ(v, u) =

puv

1 − qu
F (1, v, uq).

The case of the first accent, i.e., the coefficient ofv1, is thus

[v1]Ψ(v, u) =
pu

1 − qu
F (1, 0, uq) =

pu

1 − qu

∑

k≥1
(pqu)k(−1)k−1q(

k
2)

(q2u)k

1 −
∑

k≥1
(p)k(−1)k−1q(

k
2)

(q)k

=

∑

k≥2
(pu)k(−1)kq(

k
2)

(qu)k

∑

k≥0
(p)k(−1)kq(

k
2)

(q)k

.

Notice that
∑

k≥0

(p)k(−1)kq(
k

2)

(q)k
= (p)∞.

And therefore the average of the end height of the first ascenttends to

1

(p)∞

∑

k≥2

kpk(−1)kq(
k

2)

(q)k
+

1

(p)∞

∑

k≥2

pk(−1)kq(
k

2)

(q)k

k
∑

i=1

qi

1 − qi
. (4.2)

This quantity appears in (4) in the form

q

p
+

1

(p)∞

∑

h≥0

(h+ 2)pq2h+1(p)h. (4.3)
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Furthermore,

G(z, v, u) = vzF (z, v, uq)
1

1− z
+

puz

1 − qu
,

and
Φ(v, u) = vF (1, v, uq).

Also,

[v1]Φ(v, u) = F (1, 0, uq) =
1

(p)∞

∑

k≥1

(pqu)k(−1)k−1q(
k

2)

(q2u)k
.

And therefore the average of the initial height of the first ascent tends to

1

(p)∞

∑

k≥2

(k − 1)pk(−1)kq(
k

2)

(q)k
+

1

(p)∞

∑

k≥2

pk(−1)kq(
k

2)

(q)k

k
∑

i=2

qi

1 − qi
. (4.4)

The version given in the paper (5) is

1

(p)∞

∑

h≥0

(h+ 1)pq2h+1(p)h. (4.5)

5 Ascents: the weak model
We only collect the relevant formulæ here:

F (u) =
puz

1 − qu
+

puz

1 − qu
F (1) +

pz(v − 1)

q(1 − qu)
F (uq),

F (z, v, u) =
u

∑

k≥1
(pz)k(v−1)k−1

(qu)k

1 −
∑

k≥1
(pz)k(v−1)k−1

(q)k

.

H(z, v, u) =
pzv

q(1 − qu)
F (z, v, uq)

1

1 − z
+

pz

1 − qu
,

Ψ(v, u) =
pv

q(1 − qu)
F (1, v, uq),

G(z, v, u) =
zv

q
F (z, v, uq)

1

1 − z
+

pz

1 − qu
,

Φ(v, u) =
v

q
F (1, v, uq).

Probabilistic Analysis

We will analyze the descents in the strict model with probabilistic tools. We start from an infinite sequence
of geom(p) RVs.
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6 Markov chains
In this section, we consider the successive descents as a Markov chain, related to initial and end values of each
descent.

Let

π(i) := pqi−1,

P (i) :=
∑

j≥i

π(j) = qi−1,

Ik := beginning of thekth descent (initial height),

Jk := end of thekth descent (end height),

Ik > Jk, Ik+1 ≥ Jk, Ik ≥ 2.

By convention,J0 is the firstgeom(p) RV. We have

P[I2 = i2, J2 = j2|I1 = i1, J1 = j1] =
∑

l≥0

∑

j1≤k2≤···≤kl≤i2

π(k2) . . . π(kl)π(i2)π(j2),

with the conventions

l = 0 : i2 ≡ j1,

l = 1 : i2 ≥ j1.

This is independent ofi1. Set

A(a, b, t) :=
∑

a≤k1≤···≤kt≤b

qk1+···+kt ,

and

B(a, b) :=
∑

t≥0

(

p

q

)t

A(a, b, t).

Then
P[I2 = i2, J2 = j2|J1 = j1] = [[i2 = j1]]π(j2) +B(j1, i2)π(i2)π(j2).

But we know that

∑

0≤k1≤···≤kt≤n

qk1+···+kt =
1

(q)t

t
∑

j=0

(−1)j

[

t

j

]

qjn+(j+1

2 ) =

[

n+ t

t

]

.

Therefore

A(a, b, t) :=
∑

a≤k1≤···≤kt≤b

qk1+···+kt

= qat
∑

0≤k1≤···≤kt≤b−a

qk1+···+kt

= qat

[

b− a+ t

b− a

]

.
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We will use
∑

t≥0

αt

[

m+ t

m

]

=
1

(α)m+1
.

Then

B(a, b) :=
∑

t≥0

(

p

q

)t

A(a, b, t) =
(p)a−1

(p)b
,

and

P[I2 = i2, J2 = j2|J1 = j1] = [[i2 = j1]]π(j2) +
(p)j1−1

(p)i2

π(i2)π(j2), (6.1)

P[I2 = i2|J1 = j1] = [[i2 = j1]](1 − qi2−1) +
(p)j1−1

(p)i2

pqi2−1(1 − qi2−1). (6.2)

The transition matrix betweenI1 andI2 is given by

P[I2 = i2|I1 = i1] =
∑

j1<i1

π(j1)

1 − P (i1)
P[I2 = i2|J1 = j1]

= [[i2 < i1]]
π(i2)

1 − P (i1)
(1 − qi2−1) +

∑

j1<i1,j1≤i2

π(j1)

1 − P (i1)

(p)j1−1

(p)i2

π(i2)(1 − qi2−1). (6.3)

Let us first check that
∑

i2≥2 P[I2 = i2|I1 = i1] = 1. We have, using (A.8)

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
(1 − qi2−1) +

∑

i2≥2

∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

=

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
−

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
qi2−1 +

∑

i2≥2

p

1 − qi1−1

1

(p)i2

pqi2−1(1 − qi2−1)

+

i1−1
∑

j1=2

∑

i2≥j1

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

=
1

1 − qi1−1
[1 − p− qi1−1] −

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
qi2−1 +

p

1 − qi1−1
+

1

1 − qi1−1

i1−1
∑

j1=2

pqj1−1qj1−1

= 1.

Now we compute the stationary measureϕ(i) of this matrix. (see, for instance, (3)). We have

∑

i1>i2

ϕ(i1)
pqi2−1

1 − qi1−1
(1 − qi2−1) +

∑

i1≥2

ϕ(i1)
∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1) = ϕ(i2),

or, setting

ψ(i) =
ϕ(i)

pqi−1(1 − qi−1)
,
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we have
∑

i1>i2

pqi1−1ψ(i1) +
∑

i1≥2

pqi1−1ψ(i1)
∑

j1<i1,j1≤i2

pqj1−1 (p)j1−1

(p)i2

= ψ(i2).

After some algebra, we will find thatψ(i) = constant is a solution of this equation. But it is probabilistically
obvious: the stationary distribution is proportional topqi−1(1 − qi−1). We have, settingψ ≡ 1,

∑

i1>i2

pqi1−1+
∑

i1≥2

pqi1−1
∑

j1<i1,j1≤i2

pqj1−1 (p)j1−1

(p)i2

= qi2 +
1

(p)i2

i2
∑

j1=1

pqj1−1(p)j1−1q
j1

= qi2 +
1

(p)i2

pq
∑

m≥0

q2m(p)m −
1

(p)i2

pqq2i2(p)i2

∑

v≥0

q2v(pqi2 )v

= qi2 + (pqi2 )∞ + 1 − qi2 − (pqi2)∞ = 1,

as expected. (We used (A.5) twice.)
The stationary distribution is given by

fstationary(i) =
1 + q

q
pqi−1(1 − qi−1). (6.4)

The stationary distribution generating function is given by

G(z) =
p2(1 + q)z2

(1 − qz)(1 − q2z)
,

from which the stationary moments are easily derived:

E(I) =
2 + q

1 − q2
,

E(I2) =
q3 + 4q2 + 5q + 4

(1 − q2)2
.

The stationay distribution of the end value is given by

1 + q

q

∞
∑

i1=i2+1

pqi1−1(1 − qi1−1)pqi2−1/(1 − qi1−1) = (1 + q)pq2i2−2, i2 ≥ 1,

which sums correctly to1.
Another transition matrix of interest is given by

P[J2 = j2|J1 = j1] = π(j2)[[j2 < j1]] +
∑

i2≥j1,i2>j2

(p)j1−1

(p)i2

π(i2)π(j2). (6.5)

7 Descent distributions
In this section, we use the Markov chain derived in the previous section to obtain the distribution of initial and
end values of first and second descents. For the first descent initial valueI1, for example, with (A.9), we have

f1(i1) := P[I1 = i1] =

i1
∑

j0=1

pqj0−1
P[I1 = i1|J0 = j0]
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= pqi1−1(1 − qi1−1) +

i1
∑

j0=1

pqj0−1 (p)j0−1

(p)i1

pqi1−1(1 − qi1−1)

= pqi1−1(1 − qi1−1)
1

(p)i1

. (7.1)

A graph off1(i), q = 0.7 is given in Figure 1. It is easily checked that

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 4 6 8 10 12 14 16 18 20

Fig. 1: f1(i), q = 0.7

∞
∑

i=2

f1(i) = 1.

Indeed
∑

i≥2

pqi−1(1 − qi−1)
1

(p)i
= 1, by (A.4).

A comparison betweenf1(i) and the stationary distributionfstationary(i), q = 0.7 is given in Figure 2.
For the end height of the first descent, we have, with (A.9) and(A.10),

γ1(j1) := P[J1 = j1] =
∑

j0>j1

pqj0−1pqj1−1 +
∑

i1>j1

i1
∑

j0=1

pqj0−1 (p)j0−1

(p)i1

pqi1−1pqj1−1

= pqj1−1

[

1

(p)∞
−

1

(p)j1

]

. (7.2)

Of course
∑

j≥1 γ1(j) = 1, by (A.10).
Note that we also have, with (A.10),

γ1(j1) =

∞
∑

j1+1

f1(i1)
π(j1)

1 − P (i1)
=

∞
∑

j1+1

pqi1−1(1 − qi1−1)
1

(p)i1

pqj1−1

1 − qi1−1
= pqj1−1

[

1

(p)∞
−

1

(p)j1

]

.
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Fig. 2: Comparison betweenf1(i) andfstationary(i), q = 0.7

The distribution of the second descent(I2, J2) is given by the square of the Markov matrix, i.e.

γ2(i2, j2) =
∑

j0≥1

pqj0−1
∑

j1

P[J1 = j1|J0 = j0]P[I2 = i2, J2 = j2|J1 = j1],

The distribution of the next descents is related to successive powers of the transition matrix.

A compact form forγ2(i2, j2) is given below.

Now, the distribution of the initial value of theseconddescentI2 is given by (we use (A.3), (A.9))

f2(i2) := P[I2 = i2] =

∞
∑

i1=2

f1(i1)P[I2 = i2|I1 = i1] =

∞
∑

i1=2

pqi1−1(1 − qi1−1)
1

(p)i1

P[I2 = i2|I1 = i1]

=
∑

i1>i2

pqi1−1(1 − qi1−1)
1

(p)i1

pqi2−1

1 − qi1−1
(1 − qi2−1)

+
∑

i1≥2

pqi1−1(1 − qi1−1)
1

(p)i1

∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

= pqi2−1(1 − qi2−1)
1

(p)i2−1(1 − pqi2−1)

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1(p)j1−1

∑

i1>j1

pqi1−1 1

(p)i1
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= pqi2−1(1 − qi2−1)
1

(p)i2−1(1 − pqi2−1)

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1 1

1 − pqj1−1

[

1

(pqj1)∞
− 1

]

= pqi2−1(1 − qi2−1)
1

(p)i2

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1

[

1

(pqj1−1)∞
−

1

1 − pqj1−1

]

= pqi2−1(1 − qi2−1)

[

1

(p)∞
−

1

(p)i2

]

+ p2qi2−1(1 − qi2−1)
1

(p)i2

1

(p)∞

i2−1
∑

j1=0

qj1(p)j1 − p2qi2−1(1 − qi2−1)
1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1

= pqi2−1(1 − qi2−1)

[

1

(p)∞
−

1

(p)i2

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

1

(p)∞
[1 − (p)i2 ] − p2qi2−1(1 − qi2−1)

1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1

= pqi2−1(1 − qi2−1)
1

(p)i2

[

1

(p)∞
− 1

]

− p2qi2−1(1 − qi2−1)
1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1
.

Note that this gives an explicit expression forγ2(i2, j2):

γ2(i2, j2) = f2(i2)
π(j2)

1 − P (i2)
.

A comparison betweenf2(i) andfstationary(i), q = 0.7 is given in Figure 3. The convergence to the stationary
distribution is quite fast.

Let us check that
∑∞

i=2 f2(i) = 1. We have, using (A.8) and (A.1)

∞
∑

i=2



pqi−1(1 − qi−1)
1

(p)i

[

1

(p)∞
− 1

]

− p2qi−1(1 − qi−1)
1

(p)i

i−1
∑

j1=0

qj1

1 − pqj1





=
1

(p)∞
− 1 −

∑

j1≥1

p2 qj1

1 − pqj1

∑

i≥j1+1

qi−1(1 − qi−1)
1

(p)i
− p2 1

1 − p

∑

i≥2

qi−1(1 − qi−1)
1

(p)i

=
1

(p)∞
− 1 −

∑

j1≥1

p2 qj1

1 − pqj1

qj1

p(p)j1

− p2 1

1 − p

1

p
= 1.

8 The moments of descent parameters
The first moments of the first and second descents initial values are analyzed here by intensive use of some
combinatorial identities.
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Fig. 3: Comparison betweenf2(i) andfstationary(i), q = 0.7

We derive the mean of the initial value of the first descentI1,

E(I1) =

∞
∑

i=2

f1(i)i =
∑

i≥2

pqi−1(1 − qi−1)
1

(p)i
i

= p
∑

i≥1

qi−1i

(pq)i
− p

∑

i≥1

q2i−1i

(pq)i
+ p

∑

i≥1

qi

(p)i+1
(1 − qi)

= p
∑

i≥1

qi−1i

(pq)i
− p

∑

i≥1

q2i−1i

(pq)i
+ 1 by (A.4).

(8.1)

This is Theorem 3 in (5). However, we want to show now independently that this coincides with closed form
obtained earlier as (3.4).

E(I1) = p
∑

i≥0

qi

(p)i+1
(1 − qi)(i+ 1)

= p
∑

i≥0

i
∑

h=0

qi

(p)i+1
(1 − qi)

=
p

q

∑

h≥0

∑

i≥h

qi

(pq)i
−
p

q

∑

h≥0

∑

i≥h

q2i

(pq)i
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=
p

q

∑

h≥0

qh

(pq)h

∑

i≥0

qi

(pqh+1)i
−
p

q

∑

h≥0

q2h

(pq)h

∑

i≥0

q2i

(pqh+1)i
.

Now use (A.3):

∑

i≥0

qi

(pqh+1)i
=

1

pqh(pqh+1)∞
+ 1 −

1

pqh
.

We need also this (use(A.1)):

∑

i≥0

q2i

(pqh+1)i
=

1

pq2h

1

(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1.

We now plug these two result in:

E(I1) =
p

q

∑

h≥0

qh

(pq)h

∑

i≥0

qi

(pqh+1)i
−
p

q

∑

h≥0

q2h

(pq)h

∑

i≥0

q2i

(pqh+1)i

=
p

q

∑

h≥0

qh

(pq)h

[

1

pqh(pqh+1)∞
+ 1 −

1

pqh

]

−
p

q

∑

h≥0

q2h

(pq)h

[

1

pq2h

1

(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1

]

=
p

q

∑

h≥0

1

(pq)h

[

1

p(pqh+1)∞
+ qh −

1

p

]

−
p

q

∑

h≥0

1

(pq)h

[

1

p(pqh+1)∞
−

1

p
−
qh+1

p
+ q2h

]

=
p

q

∑

h≥0

1

(pq)h

[

qh +
qh+1

p
− q2h

]

=
p

q

∑

h≥0

1

(pq)h

[

qh − q2h

]

+
∑

h≥0

qh

(pq)h

=
p

q

∑

h≥0

qh

(pq)h
−
p

q

∑

h≥0

q2h

(pq)h
+

∑

h≥0

qh

(pq)h

=
1

q

∑

h≥0

qh

(pq)h
−
p

q

∑

h≥0

q2h

(pq)h

=
1

q

[

1

p(pq)∞
+ 1 −

1

p

]

−
p

q

[

1

p

1

(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

q

[

q

p(pq)∞
−
q

p
+ 2q

]

=
1

p(pq)∞
−

1

p
+ 2.

Since
1

p(pq)∞
−

1

p
+ 2 = 1 −

q

p
+

q

p(p)∞
,

we established the formula (3.4)

E(I1) = 1 +
q

p

(

− 1 +
1

(p)∞

)

.
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More generally higher moments are given by

E(Ik
1 ) =

∑

h≥1

pqh(1 − qh)(h+ 1)k +

∞
∑

i1=2

i1
∑

j0=1

pqj0−1(p)j0−1
pqi1−1

(p)i1

(1 − qi1−1)ik1 .

Let us look at the modified second moment ofI1 (again we use (A.3), (A.1) for simplifications):

EE =

∞
∑

i=2

f1(i)i(i+ 1)/2 = p
∑

i≥0

qi

(p)i+1
(1 − qi)(i+ 1)(i+ 2)/2

= p
∑

0≤k≤h

∑

i≥h

qi

(p)i+1
(1 − qi)

=
1

q

∑

0≤k≤h

qh

(pq)h
−
p

q

∑

0≤k≤h

q2h

(pq)h

=
1

q

∑

k≥0

qk

(pq)k

∑

h≥0

qh

(pqk+1)h
−
p

q

∑

k≥0

q2k

(pq)k

∑

h≥0

q2h

(pqk+1)h

=
1

q

∑

k≥0

qk

(pq)k

[

1

pqk(pqk+1)∞
+ 1 −

1

pqk

]

−
p

q

∑

k≥0

q2k

(pq)k

[

1

pq2k

1

(pqk+1)∞
−

1

pq2k
−

1

pqk−1
+ 1

]

=
1

q

∑

k≥0

1

(pq)k

[

1

p(pqk+1)∞
+ qk −

1

p

]

−
1

q

∑

k≥0

1

(pq)k

[

1

(pqk+1)∞
− 1 − qk+1 + pq2k

]

=
1

q

∑

k≥0

1

(pq)k

[

1

p(pqk+1)∞
+ qk −

1

p
−

1

(pqk+1)∞
+ 1 + qk+1 − pq2k

]

=
1

q

∑

k≥0

1

(pq)k

[

q

p(pqk+1)∞
−
q

p
+ qk(1 + q) − pq2k

]

=
1

p

∑

k≥0

1

(pq)k

[

1

(pqk+1)∞
− 1

]

+
1 + q

q

∑

k≥0

qk

(pq)k
−
p

q

∑

k≥0

q2k

(pq)k

=
1

p

∑

k≥0

[

1

(pq)∞
−

1

(pq)k

]

+
1 + q

q

[

1

p(pq)∞
+ 1 −

1

p

]

−
p

q

[

1

p

1

(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

p

∑

k≥0

[

1

(pq)∞
−

1

(pq)k

]

+
2

p(pq)∞
+ 3 −

2

p

=
1

p
lim
t→1

[

1

(pq)∞

1

1 − t
−

∑

k≥0

tk

(pq)k

]

+
2

p(pq)∞
+ 3 −

2

p
.

To compute this limit, we use (A.7):

lim
t→1

[

1

(pq)∞

1

1 − t
−

∑

k≥0

tk

(pq)k

]
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= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(t)∞

∑

m≥0

(p)m(t)mq
m

(q)m

]

= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(t)∞

−
(q)∞

(pq)∞(t)∞

∑

m≥1

(p)m(t)mq
m

(q)m

]

= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(1 − t)(qt)∞

]

−
(q)∞

(pq)∞(q)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞
lim
t→1

[

1

1 − t
−

(q)∞
(1 − t)(qt)∞

]

−
1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞
lim
t→1

(qt)∞ − (q)∞
(1 − t)(qt)∞

−
1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞
lim
t→1

d
dt (qt)∞

∣

∣

t=1
(t− 1)

(1 − t)(qt)∞
−

1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

= −
1

(pq)∞(q)∞

d

dt
(qt)∞

∣

∣

t=1
−

1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞

∑

k≥1

qk

1 − qk
−

1

(pq)∞

∑

m≥1

(p)mq
m

1 − qm

=
1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
.

So finally:

EE =
1

p(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
+

2

p(pq)∞
+ 3 −

2

p
.

From this, the variance can we stated as:

2EE − 2E(I1) − E
2(I1).

Now we turn to the second descent. The meanE(I2) of the initial value of the second descent is given by
(we use (3.4))

E(I2) =
∞
∑

i=2

f2(i)i = p

[

1

(p)∞
− 1

]

∑

i≥1

iqi−1(1 − qi−1)
1

(p)i
−

∑

i≥1

ip2qi−1(1 − qi−1)
1

(p)i

i−1
∑

j=0

qj

1 − pqj

= p

[

1

(p)∞
− 1

]

∑

i≥0

(i+ 1)qi(1 − qi)
1

(p)i+1
− p2

∑

j≥0

qj

1 − pqj

∑

i≥j

(i+ 1)qi(1 − qi)
1

(p)i+1

=

[

1

(p)∞
− 1

] [

1 −
q

p
+

q

p(p)∞

]

− p
∑

j≥0

pqj

1 − pqj

∑

i≥j

(i+ 1)qi(1 − qi)
1

(p)i+1

=

[

1

(p)∞
− 1 −

∑

j≥0

pqj

1 − pqj

] [

1 −
q

p
+

q

p(p)∞

]

+ p
∑

j≥0

pqj

1 − pqj

∑

0≤i<j

(i+ 1)qi(1 − qi)
1

(p)i+1
.
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The last inner sum can be computed:

S0 :=
∑

0≤i<j

(i+ 1)qi(1 − qi)
1

(p)i+1
=

∑

0≤i<j

∑

0≤h≤i

qi(1 − qi)
1

(p)i+1

=
∑

0≤h≤i<j

qi

(p)i+1
−

∑

0≤h≤i<j

q2i

(p)i+1

=
∑

0≤h<j

∑

0≤i<j−h

qi+h

(p)i+h+1
−

∑

0≤h<j

∑

0≤i<j−h

q2i+2h

(p)i+h+1

=
∑

0≤h<j

qh

(p)h+1

∑

0≤i<j−h

qi

(pqh+1)i
−

∑

0≤h<j

q2h

(p)h+1

∑

0≤i<j−h

q2i

(pqh+1)i
.

We do two auxiliary calculation (with (A.3)):

S1 :=
∑

0≤i<I

qi

(pqh+1)i

=
∑

i≥0

qi

(pqh+1)i
−

∑

i≥I

qi

(pqh+1)i

=
1

pqh(pqh+1)∞
+ 1 −

1

pqh
−

qI

(pqh+1)I

∑

i≥0

qi

(pqh+I+1)i

=
1

pqh(pqh+1)∞
+ 1 −

1

pqh
−

qI

(pqh+1)I

[

1

pqh+I(pqh+I+1)∞
+ 1 −

1

pqh+I

]

= 1 −
1

pqh
−

qI

(pqh+1)I
+

1

pqh(pqh+1)I
,

and with (A.1):

S2 :=
∑

0≤i<I

q2i

(pqh+1)i

=
∑

i≥0

q2i

(pqh+1)i
−

∑

i≥I

q2i

(pqh+1)i

=
1

pq2h(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1 −

q2I

(pqh+1)I

∑

i≥0

q2i

(pqh+I+1)i

=
1

pq2h(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1 −

q2I

(pqh+1)I

[

1

pq2h+2I(pqh+I+1)∞
−

1

pq2h+2I
−

1

pqh+I−1
+ 1

]

= −
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)I
+

qI

pqh−1(pqh+1)I
−

q2I

(pqh+1)I
.
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Therefore

S0 =
∑

0≤h<j

qh

(p)h+1

∑

0≤i<j−h

qi

(pqh+1)i
−

∑

0≤h<j

q2h

(p)h+1

∑

0≤i<j−h

q2i

(pqh+1)i

=
∑

0≤h<j

qh

(p)h+1

[

1 −
1

pqh
−

qj−h

(pqh+1)j−h
+

1

pqh(pqh+1)j−h

]

−
∑

0≤h<j

q2h

(p)h+1

[

−
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)j−h
+

qj−h

pqh−1(pqh+1)j−h
−

q2(j−h)

(pqh+1)j−h

]

=
∑

0≤h<j

[

qh

(p)h+1
−

1

p(p)h+1
−

qj

(p)j+1
+

1

p(p)j+1

]

−
∑

0≤h<j

[

−
1

p(p)h+1
−

qh+1

p(p)h+1
+

q2h

(p)h+1
+

1

p(p)j+1
+

qj+1

p(p)j+1
−

q2j

(p)j+1

]

=
∑

0≤h<j

[

qh

p(p)h+1
−

qj

p(p)j+1
−

q2h

(p)h+1
+

q2j

(p)j+1

]

.

Recalling the expressions forS1 andS2 that we just derived, we get

S0 =
∑

0≤h<j

[

qh

pq(pq)h
−

q2h

q(pq)h

]

−
jqj

p(p)j+1
+

jq2j

(p)j+1

=
1

pq

[

1 −
1

p
−

qj

(pq)j
+

1

p(pq)j

]

−
1

q

[

−
2q

p
+

1

p(pq)j
+

qj+1

p(pq)j
−

q2j

(p)j

]

−
jqj

p(p)j+1
+

jq2j

(p)j+1

=
1

pq
−

1

p2q
−

qj

pq(pq)j
+

1

p2q(pq)j
+

2

p
−

1

pq(pq)j
−

qj

p(pq)j
+

q2j

q(p)j
−

jqj

p(p)j+1
+

jq2j

(p)j+1

=
2

p
−

1

p2
+

q

p2(p)j+1
−

(1 + q)qj

pq(p)j+1
+

q2j

q(p)j
−

jqj

p(p)j+1
+

jq2j

(p)j+1
.

Therefore we found a first expression for the mean:

E(I2) =
1

p

[

1

(p)∞
− 1 −

∑

j≥0

pqj

1 − pqj

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

2p− 1 +
q

(p)j+1
−
p(1 + q)qj

q(p)j+1
+
p2q2j

q(p)j
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]

=
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1
+
p2q2j

q(p)j
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]
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=
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]

+
1

p

∑

j≥0

p3q3j

q(p)j+1
.

The last sum can be simplified; we will use Heine witht = pqh, a = 0, c = q, b = q:

∑

i≥0

q3i

(pqh+1)i
=

(q)2
(pqh+1)∞

∑

m≥0

(pqh)m(q3)m

(q)m
qm

=
(q)2

(pqh+1)∞

(pqh)∞(q4)∞
(q)∞

∑

m≥0

(q)m

(q)m(q4)m
(pqh)m

=
1 − pqh

1 − q3

∑

m≥0

1

(q4)m
(pqh)m

=
(1 − pqh)(q)3

(pqh)3

∑

m≥3

1

(q)m
(pqh)m

=
(1 − pqh)(q)3

(pqh)3

[

1

(pqh)∞
− 1 − qh −

(pqh)2

(q)2

]

=
(q)3

(pqh)3
1

(pqh+1)∞
−

(1 − pqh)(q)3
p3q3h

−
(1 − pqh)(q)3

p3q2h
−

(1 − pqh)(1 − q3)

pqh
.

From this we derive (seth = −1)

∑

j≥0

p3q3j

q(p)j+1
=
p3

q

[

(q)3
(p/q)3

1

(p)∞
−

(1 − p/q)(q)3
p3q−3

−
(1 − p/q)(q)3

p3q−2
−

(1 − p/q)(1 − q3)

p/q

]

=
p3

q

[

(q)3q
3

p3

1

(p)∞
−
q2(q − p)(q)3

p3
−
q(q − p)(q)3

p3
−

(q − p)(1 − q3)

p

]

=
(q)3q

2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q
.

Hence

E(I2) =
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1

]

−
1

p

∑

j≥0

jp2q2j

(p)j+1

+
1

p

[

(q)3q
2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q

]

.
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We still need (we useS2)

∑

j≥0

jq2j

(p)j+1
=

∑

h≥0

∑

j≥h

q2j

(p)j+1

=
∑

h≥0

q2h

(p)h+1

∑

j≥0

q2j

(pqh+1)j

=
∑

h≥0

q2h

(p)h+1

[

−
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)∞

]

= −
1

p

∑

h≥0

1

(p)h+1

[

1 −
1

(pqh+1)∞

]

−
q

p

∑

h≥0

qh

(p)h+1
+

∑

h≥0

q2h

(p)h+1

=
1

pq

∑

h≥0

[

1

(pq)∞
−

1

(pq)h

]

−
1

p

[

1

p(pq)∞
+ 1 −

1

p

]

+
1

q

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

pq

1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
−

1

p

[

1

p(pq)∞
+ 1 −

1

p

]

+
1

q

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

,

hence

E(I2) =
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1

]

−
1

p2q

1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
+

1

p2

[

1

p(pq)∞
+ 1 −

1

p

]

−
1

pq

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

+
1

p

[

(q)3q
2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q

]

.

Although this computation was already quite involved, we could get all cross-moments from (6.3), but only
with considerable effort.

9 Markov Chains and Sojourn times
In this section, we obtain the asymptotic distribution of the number of descents initial values in some interval.

9.1 General asymptotic distribution
LetXi, i = 1, . . . ,m be an ergodic Markov chain (MC) andA be a subset of states. Assume that the MC is
stationary and setxi := [[Xi ∈ A]], with M := E(xi). The numberD of times the MC is inA on1, . . . ,m is
such that

E(D) = mM,

V(D) = E

[ m
∑

i=1

(xi −M)2 + 2

m−1
∑

i=1

m
∑

j=i+1

(xi −M)(xj −M)

]

.
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If
E[(xi −M)(xj −M)] = 0, j ≥ i+ 2,

then, settingB := E(xixi+1), we obtain

V(D) = mM(1 −M) + 2(m− 1)(B −M2).

But we have a central limit theorem for MC (again, see (3)). This gives

D − E(D)
√

V(D)
∼ N (0, 1), m→ ∞.

9.2 Number of descents values in some interval
Here, the states of the MC are couplesYtYt+1 with geometric distribution. Also the MC starts with the station-
ary distributionpqi−1pqj−1, hencem = n− 1.

If we are interested in the asymptotic (gaussian) distribution of the number of descents initial values in some
interval[τ, τ + ∆], we compute

M =
τ+∆
∑

i=τ

pqi−1(1 − qi−1),

B =

τ+∆
∑

i=τ+1

pqi−1
i−1
∑

j=τ

pqj−1(1 − qj−1).

Of course, an explicit formula could be written forM resp.B.

10 Permutations
Starting fromn geom(p) RVs, asq → 1, we can derive the asymptotic properties of first and second descents,
in a large permutation. We will consider large size (n → ∞) permutations of{1, . . . , n}, or n-permutations
for short. It is well known that all rank statistics of ann-permutation can be derived from the corresponding
ones of a sequence ofn geom(p) RVs asq → 1. But, of course, it is not possible to deduce the moments of
the beginning (initial height) of the first descent of an-permutation from the corresponding moments of the
geometric variables statistic, asq → 1. However, the asymptoticdistribution of this RV can be derived as
follows. Letq = 1 − ε. This gives an asymptotic distribution function for eachgeom RV K (ε→ 0)

1 − qi ∼ F (i) = 1 − e−iε.

SetU = F (K); U is asymptotically distributed as auniform[0, 1] RV. Let us considern geom(p) RVs
K1, . . . ,Kn. If we scale the correspondingU variables withn (i.e. multiply by n), take the integer part,
we have asymptotically a permutation onn, for largen. More precisely the rank ofUi is the value of theith
element of the permutation. This gives

u = 1 − e−iε, du = ε(1 − u)di, i = − ln(1 − u)/ε.

Setg(u) := f1(i) as given by (7.1). Usingn geometric RVs instead of an infinite sequence of ones intoduces
only an exponentially small error.

For instance, this leads to

E(I1) ∼ n

∫ 1

0

g(u)u
du

ε(1 − u)
, ε→ 0.
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We have by simple algebra,
g(u) ∼ ε(1 − u)u+ euu(1 − e−u)ε(1 − u),

and the asymptotic density ofI1/n is given by (we multiply bydi = du/(ε(1 − u)))

h1(u) = u[1 + eu(1 − e−u)] = ueu = u
∞
∑

j=0

uj

j!
.

But this has a clear direct probabilistic interpretation: if Uj+1 = u, the probability

P[U1 ≤ U2 ≤ · · · ≤ Uj ≤ Uj+1 ≥ Uj+2] = u
uj

j!
.

Again, asn is large, we can use an infinite summation onj, with exponentially small error.
Note that

∫ 1

0

h1(u)du = 1,

as expected, and

E(I1) ∼ n

∫ 1

0

h1(u)udu = n(e− 2) := nE1,0, n→ ∞,

which conforms to Theorem 9 of (5). All moments can be derived. For instance

E(I2
1 ) ∼ n2

∫ 1

0

h1(u)u
2du = n2(6 − 2e) := n2E2,0,

E(I3
1 ) ∼ n3E3,0, with E3,0 = 9e− 24.

A general expression can be derived as follows. We have (we drop the second index)

Ek = e− (k + 1)Ek−1, E0 = 1.

This first order recursion can be solved by iteration:

Ek = (k + 1)!(−1)k

[

e

k
∑

i=1

(−1)i

(i+ 1)!
+ 1

]

. (10.1)

By convention,E−1 =
∫ 1

0
eudu = e− 1.

We could derive similar expressions forJ2.
The errors terms, asn → ∞ can be derived as follows. The rankR of Uj+1 is such thatR − (j + 2) is

Binomial(n− (j +2), u), if Uj+1 has valueu and corresponds to the first descent. Indeed,j values are already
belowu (on the left) and one on the right. Ifd values among then− (j + 2) remaining ones are belowu, then
Uj+1 possesses the rankd+ j + 2. So the moments ofR/n are given by the characteristic function

F :=
[

1 + u
(

eiθ/n − 1
)]n−(j+2)

eiθ(j+2)/n,

from which we derive

E(R/n|j) ∼ u+
−u(u− 1)(j + 2)

n
,
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E(R2/n2|j) ∼ u2 +
−u(u− 1)(5 + 2j)

n
.

We multiply byuuj

j! , and sum onj; this gives

∞
∑

j=0

u
uj

j!
E(R/n|j) ∼ h1(u)u+

−euu(u− 1)(u+ 2)

n
,

∞
∑

j=0

u
uj

j!
E(R2/n2|j) ∼ h1(u)u

2 +
−euu2(u− 1)(2u+ 5)

n
.

Hence, integrating onu ∈ [0..1], we finally obtain

E(I1/n) ∼ E1,0 +
e− 2

n
,

E(I2
1/n

2) ∼ E2,0 +
20 − 7e

n
.

The first expression fits with Theorem 9 in (5); the second moment wasn’t computed in this paper.
The joint moments of the first and second descentI1, I2 are asymptotically computed as follows. First, from

(6.3),

g1(u2, u1) = [[u2 < u1]]ε(1 − u2)
u2

u1
+

∫ min(u1,u2)

0

dv1
ε(1 − v1)

ε
1 − v1
u1

eu2−v1εu2(1 − u2)

= [[u2 < u1]]ε(1 − u2)
u2

u1
+ eu2εu2

1 − u2

u1
(1 − e−min(u1,u2)).

This leads to the Markov kernel

h(u2, u1) =
g1(u2, u1)

ε(1 − u2)
= [[u2 < u1]]

u2

u1
+ eu2u2

1

u1
(1 − e−min(u1,u2)). (10.2)

This can also be derived from theuniform[0, 1] random variables properties.
The joint moment is asymptotically given given byn2Ek,l, with

Ek,l =

∫ 1

0

∫ 1

0

h1(u1)h(u2, u1)u
k
1u

l
2du1du2

=

∫ 1

0

u1e
u1

∫ 1

0

uk
1u

l
2

1

u1

[

[[u2 < u1]]u2 + eu2u2(1 − e−min(u1,u2))
]

du1du2.

The first values ofEk,l are given in Table 1.
The asymptotic density ofI2/n is given by

h2(u) =

∫ 1

0

h1(u1)h(u, u1)du1 = u[e1+u − ueu − eu] = ueu[−1 − u+ e],

and similarly forh3(u). This gives eventually

h3(u) =

∫ 1

0

h2(u2)h(u3, u2)du2 = ueu[(u+ u2/2) + e(−u− 2) + e2].
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l
k

Z
Z

Z 0 1 2
0 1 e2 − e− 4 −2e2 − e+ 18
1 e− 2 −7e/2 + 10 20e− 54
2 6 − 2e e2 + 32e/3− 36 −2e2 − 235e/3 + 228

Tab. 1: Ek,l

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1

u

◦ : h1(u)
2 : h2(u)
line : h(u)

Fig. 4: h(u), h1(u), h2(u)

The convergence to the stationary distributionh(u) = 2u is very fast. h(u) can be derived from (6.4), or
directly by considering two successive RVsUk. Figure 4 givesh(u), h1(u), h2(u)

The differenceh3(u) − h(u) is given in Figure 5.
A general expression forhi(u) can be computed as follows: we observe thathi(u) is of the form

hi(u) = ueu
i−1
∑

k=0

ekPi,k(u),

where

Pi,k(u) =
i−k−1
∑

l=0

P (i, k, l)ul.

But, settingEl := Dl,0 +Dl,1e, from (10.2) and (10.1),

hi(u) =

∫ 1

0

hi−1(u)h(u, v)dv
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–0.004

–0.002

0

0.002

0.004

0.2 0.4 0.6 0.8 1
u

Fig. 5: h3(u)− h(u)

=

∫ 1

0

hi−1(v)
1

v

[

[[u < v]]u+ euu(1 − e−min(v,u))
]

dv

=

∫ u

0

hi−1(v)
1

v
euu(1 − e−v)dv +

∫ 1

u

hi−1(v)
1

v
euudv

=

∫ 1

0

hi−1(v)
1

v
euudv −

∫ u

0

hi−1(v)
1

v
euue−vdv

= euu

[

i−2
∑

k=0

ek

∫ 1

0

Pi−1,k(v)evdv −
i−2
∑

k=0

ek

∫ u

0

Pi−1,k(v)dv

]

= euu

[

i−2
∑

k=0

ek
i−k−2
∑

l=0

Pi−1,k,l[Dl−1,0 +Dl−1,1e] −
i−2
∑

k=0

ek
i−k−2
∑

l=0

Pi−1,k,l
ul+1

l + 1

]

.

This leads to the following recurrence

Pi,i−1(u) = 1,

Pi,0,0 =
i−2
∑

l=0

Pi−1,0,lDl−1,0,

Pi,k,0 =
i−k−2
∑

l=0

Pi−1,k,lDl−1,0 +
i−k−1
∑

l=0

Pi−1,k−1,lDl−1,1, k = 1, . . . , i− 2,

Pi,k,l = −Pi−1,k,l−1/l, k = 0, . . . , i− 2, l = 1, . . . , i− k − 1.

Finally, asymptotically, givenIk, Jk is uniform[1 . . . Ik − 1].
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The number of descents values ofI/n in some interval[τ, τ + ∆] is now related to

M =

∫ τ+∆

τ

udu,

B =

∫ τ+∆

τ

du1

∫ u1

τ

u2du2.

11 Conclusion
In this paper, we have made a combinatorial and probabilistic study of initial and end heights of first, second,
. . . descents in samples of geometrically distributed random variables and in permutations. Several other (simi-
lar) models can be analyzed with our tools, let us mention: the weak model and/or ascents with the probabilistic
approach,k-descents, sized or more descents, (see (2)), last descents, (see (4)),k-ascents with a combinatorial
approach (see (2)), etc.

We leave these topics to future work (or to the interested reader), in order to keep the length of the paper
within reasonable limits.

Appendix

A Some combinatorial identities
We will use intensively Heine’s formula:

∑

m≥0

(a)m(b)mt
m

(q)m(c)m
=

(b)∞(at)∞
(c)∞(t)∞

∑

m≥0

(c/b)m(t)mb
m

(q)m(at)m
.

Severalq-combinatorial relations are deduced from Heine.

pz
∑

m≥1

q2m

(pzq)m
=

1

z

[

1

(pqz)∞
− 1

]

− q. This is Thm.1 in (5). (A.1)

∑

m≥0

(pz)mq
m =

1

pz
[1 − (pz)∞]. This is (5) in (5). (A.2)

pz
∑

m≥1

qm

(pz)m+1
=

1

1 − pz

[

1

(pqz)∞
− 1

]

. This is implicitly used in (5). (A.3)

Heine witht = q, a = 0, b = q, c = pzq, and (A.2).
∑

m≥1

pqm(1 − qm)

(p)m+1
= 1. Application of (A.3), (A.1). (A.4)

∑

m≥0

(pz)mq
2m =

1

(pz)2

[

1 − (pz)∞ −
1 − pz

q
+

(pz)∞
q

]

. This is (6) in (5). (A.5)
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∑

k≥1

pk

(q)k
= −1 +

1

(p)∞
. Heine witht = p, a = 0, b = q, c = q. (A.6)

∑

k≥0

tk

(pq)k
=

(q)∞
(pq)∞(t)∞

∑

m≥1

(p)m(t)mq
m

(q)m
. Heine witha = 0, b = q, c = pq. (A.7)

(p)j−1

∞
∑

i=j

pqi−1(1 − qi−1)

(p)i
= qj−1. Application of (A.1), (A.3). (A.8)

∑

0≤j<J

pqj(p)j = p
∑

j≥0

qj(p)j − p
∑

j≥J

qj(p)j

= p
1

p

[

1 − (p)∞

]

− pqJ (p)J
1

pqJ

[

1 − (pqJ)∞

]

= 1 − (p)∞ − (p)J

[

1 − (pqJ )∞

]

= 1 − (p)J . By (A.2). (A.9)
∑

i1>i0

pqi1−1

(p)i1

=
1

(p)i0−1(1 − pqi0−1)

[

1

(pqi0)∞
− 1

]

=
1

(p)i0

[

1

(pqi0 )∞
− 1

]

=

[

1

(p)∞
−

1

(p)i0

]

. By (A.3). (A.10)
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