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A COIN TOSSING ALGORITHM FOR
COUNTING LARGE NUMBERS OF EVENTS

PETER KIRSCHENHOFER -- HELMUT PRODINGER

ABSTRACT. R. Morris has proposed a probabilistic algorithm to count up to n
using only about log, log, n bits. In this paper a slightly more general concept is
introduced that allows to obtain a smoother average case behaviour. This concept
is general enough to cover the analysis of an algorithm where the randomness is

simulated by coin tossings.

1. Introduction

“Approximate counters” are realized by probabilistic algorithms that main-
tain an approximate count in the interval 1 to n using only about log,log, n
bits. The algorithmic principle was proposed by R.Morris [7]:

Starting with counter C = 1, after n increments C should contain a good
approximation to log, n. Thus C should be increased by 1 after other n in-
crements approximately. Since only C is known the algorithm has to base its
decision on the content of C alone.

The principle to increment the counter is now

0 with probability 1-27¢

*
1 with probability 2-¢ (+)

C:=C’+{

Flajolet [2] has analysed this algorithm in detail; another method of
analysis has been proposed by the authors [4]. In [2; p. 127ff] Flajolet also
discusses variants of the incremental procedure (*), essentially replacing base 2
by base a. For a < 2 a smoother behaviour of the counter is obtained.

The aim of this paper is twofold.
(i) On the one hand we substitute (*) by an incremental process that adds

1 . . - .
~ to the counter with suitable probability. For a = 2'/* the resulting “automa-

ton” (compare Fig. 1) is closely related to Flajolet’s smoothing procedure just
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described. Nevertheless we point out that our algorithm is slightly more general
and flexible enough to deal with a related problem described below.

(ii) On the other hand we describe a simple coin tossing algorithm that sim-
ulates the probabilities in (*). We compare the results on this algorithm with
another one whose analysis i1s closely related to a problem studied by Knuth
in the context of binary addition [6]. It turns out that the variance in our instance
is significantly smaller.

In Section 2 of this paper we present the analysis of the general incremental
principlz mentioned in (i) above.

Section 3 refers to the coin tossing problems mentioned in (ii). It turns out
that the analysis of the behaviour of these algorithms is essentially (i.e. with
neglectable error terms) covered by the analysis of Section 2.

2. A general incremental procedure

We consider the followihg incremental procedure. Starting with C' =1 we
increment as follows (b is a fixed natural number, 0 < d < 2'/%).

C .=C + 0 with probability 1—d-2-C7b
1  with probability d-2-¢7*

(The constant d will be chosen appropriately later on.) To get a good approxi-
mation for log, n it is meaningful to rescale the countervalues of counter C’ by
considerihg
C'-1

.

A reformulation of the incremental procedure in terms of C reads

C=1+

with probability 1—d.2-C-5+!

*
with probability d-2-C¢~++! (%%)

0
C:=C+ 1
b

We denote for abbreviation the possible counter values of C by

cj=1+4"—" ' =1,2,3,... .
+ b J 3

Then we have for the transition c; — c;41 the probability d - 277/%. In the
following we set

a=2'"

(92
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In order to illustrate the above concept we may use the following “automaton”:

1 —da~} 1 —da? 1 —da"3 ' 1 — da=!

Fig. 1

The reader might observe that the instance d =1 is the instance studied by
Flajolet in[2;p. 127ff]. In the following derivation we digress from Flajolet’s
analysis after having established the probabilities as in formula (6). Instead of
Flajolet’s Mellin-type analysis we use a contour integral representation for the
alternating sums coming up (compare Lemma 1).

Let pn,: denote the probability to reach “state” ¢; in n steps and H(z) the
corresponding probability generating function, i.e.,

Hi(z)= Y pajz™. (1)

. n>0

With o; =1 —da~" it follows immediately from Figure 1 that

Hi(z) = -1—_—1&; cda”z - 1—-_1—0[—; ~da”%z... : -1a1z
_ g-1g-() -1 g 1 —laiz (2)
Let |
Hi(z) = le %(i—; ’ - (3)

denote the partial fraction decomposition of Hi(z). It is a straightforward com-
putation to derive

(—1)l—ja—(‘;j)
Qj-1(a)Qi-j(a) ’

Q,-(a)=(1—§><1—517>...(1'—£7>. G
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From (3) and (4) we find (interchanging j and 1 — ;)
e
QJ(“ Ql 1-5(a)

.J=0

(1 ——daj_')n. (6)

B the binomial theorem we may express Pn, by an alternating sum:

\ (—1) a—(B)HG=Dk
Pl = Z( >( 1)*d ZQ](CL)QI 1-j(a) '

Using Euler’s famous partition identities [1]

2o -1(-) 0

and

I () ©

]>0 m2>0

the second sum in p,,; may be associated to a product.

n n d k k-1 ¢ .
o k(@ -1 _
Pri = Z<k>(—1) (a> =" 1] (1 am>. (9)
k=0 m=0
For the expectation E, of the value of the counter C after n steps we find

A MO g (-F)

21 120 m=0

Now Y I[t']f(t) = f(1), so that
1>0

n_l—-z() () Gmw=1-1n. o

An asymptotic evaluation of an alternating sum as in (10) may be performed
using the following
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LEMMA 1. [8] Let C be a curve surrounding the points s,s+1,...,n (s € N)
in the complez plane and let f(z) be analytic inside C. Then

n

. C

k=s

where
(=1)""In!

2(z=1)...(z=n) 0

[n; 2] =

Extending the contour of integration it turns out that under suitable growth
conditions on f(z) (compare [3]) the asymptotic expansion of the alternating
sum is given by

Z Res([n; 2]f(2)) + O (nF9), any € >0,
where the sum is taken over all poles 2y different from s,...,n with Rz > 0.

A : , d\*
In our sum we have s = 1 "and f(k) = (—) Qk-1(a), which may be con-
_ a

tinued analytically by
Qoo(a)

H(l“ az1+j) |

j21

f(2)=<g>zcz,_1(a), where Q,'(a)=

In order to find the residues of [n;z]f(z) at the double pole z = 0 we use
the local expansions

[n; 2] ~ —%(1 + zH,)

d\* d
(5> ~1+4 zlog(;)

1 p 1
Q:-1(a) ~ 2loga (1 + z(log a)(i - aa)) . where o, = Z o
k>1
With loga = llog2 we have the following contribution £, to Z,:

b

—T.0=1 L tlog. d— = — ay. 11
0 ogan+loga+0g., 2 "% (11)
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' 2kmi
Near the simple poles = = 1 ' = \ (a). k€ Z, k+# 0. we have the expan-
og a

S1011S . 4
3]~ T (@) = AT R (2 ()

_d_ ) _ C\k(a)-logd
a

: 1 1
QZ—](G) ~ }.Og(l ’ = \L(a)

Y

so that the poles z; yield the following fluctuating contribution £, 4 to I, :

1

= loga

F( = ,\k(ﬂ))e2k”i'|°8,(nd) .

—n,k

In total we have

THEOREM 2. The ezpected value E, of the counter C after n random incre-
ments with the generalized incremental procedure (*x) fulfils

, 1 Qq . -
E,,:log2n+gé—2+log2d+l—-z—b——g--{»b‘(logan-}—d)—}-O(n .

where

1
1/%
=) gy o=
k>1

and the periodic function

1 )

é = — (- 2kmir

,(I) logZZ ( Xk(a))c )

k0
whcfe .
2kma
x,(a) = log a and A=log,d. O
Since
) T
IN(iy)|* =

y - sinh(mwy)’

' 72 '
we have II‘(—)('c(a))'2 = O(b T ) for b — oo, so that the fluctuating term,

which is already very small for the classical case b = 1, becomes even smaller
for b getting large.
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In order to find the appropriate value for the constant d we consider the
expectation S, of 2 after n random increments:

Sn = an,l2m- (12)
I

Since
Pt =pacarg(1—da™") 4 pooygorda’ ™ (13)
we have
2d
Sn:Svt-—l"';'*'Zd) n21; 50:2»
and thus ,
1
Sn=2d(1—-—)n+2. _ (14)
a

A good choice for d is therefore

a
S sk o

so that S, =n+ 2.

Nevertheless we can analyse the variance V, of the content of C after n
steps for arbitrary d in an analogous manner as the expectation E,. Omitting
the technical details we obtain, neglecting periodic fluctuations of mean 0,

2 Je} ag 1
Vo™ Pa & 1 e ]
clo72 "7 w T Lo (16)

where [6,2]0 is the mean of the square of the periodic function §;(z) defined in
Theorem 2.

In order to study the influence of & on V, , it is helpful to make use of the
following remarkable transformation of the constant in (16): We have

5 = hi(logea),

a
g + fa = —
,; (ak - 1)
where
h(z)=3 a (17)
n(z) = —_—
o (b = 1)
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Now it follows from Dedekind’s functional equation for the 7 -function that

72 1 1 A4« 472
’“(-")=a;r:z;+a—?”'<7>

(compare [5]; observe the typo therein). Thus we have

Fha= L L4 (4 18)
e * 6log?a 2loga 24 log’a " loga /" (
On the other hand, again using 'F(iy)l2 = m, we get
loga 1 _ 2loga ( 272 )
6]y = ha 19
[ 1]0 log2 2 ; k- lnh Qkﬂ' log2 Vi loga ( )
- loga/ |
with
)k 1
hg(:c Z e (20)

k>1

log 2

Combining (18) and (19) and regarding loga = , we finally have

THEOREM 3. The variance V,, of the content of the counter C after n steps
of the generalized incremental procedure (**) fulfils

v — 1 + 1 N 47r2h 47%b 2 " 27w2b
"7 2blog2 ' 246 ' log?2 '\log2/) blog2 \log2

1
+63(logan + A) +O< oin) ,

where hi(z) and ha(z) are defined in (17) and (20), and where 83(z) is a

periodic function of mean zero, and A =log, d. O

03(z) is a combination of 6;(z) and é2(z), whose Fourier coefficients could
be computed in principle.
The reader should note that the main term is of order b~! in b; the val-
ues h; (471'2b> resp. h2<27r2b) tend to 0 exponentially fast in b. The result
log 2 log 2
quantifies the smoother behaviour of the approximate counting procedure for
increasing b. For d = 1 Theorem 3 should be compared with Flajolet'’s

result [2; eq. (50)], where only the leading term appears.

2blog 2
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3. Approximate counting by coin tossings

In this section we apply the previous results to the analysis of an approximate
counting algorithm where the incremental procedure (*) is simulated by coin
tossings. We flip a fair coin and increase the counter C by 1 after having
seen C consecutive heads occurring since the previous incremental step. More
formally the set of sequences yielding a counter C = [ is described by the regular
erpression

071{0,10}*11{0,10,110}*...1"71{0,10,...,1710}*{¢,1,...,1"71}.

- The corresponding generating function equals

-1 .

i)H 1z 1>1, (21)

11'—2,z-+-z1'*’2 '

Fi(z) = (1—2

so that the probability p,; that counter C =1 after n tossings is
Pnt = 27" [Zn] Fl(z). (22)

It is our aim to show that the analysis of this coin tossing algorithm may be
reduced to the analysis of Section 2 by approximating the probabilities p, ; step
by step.

For | > 2, Fi(z) is a rational function having [ — 1 first order poles

p1y--.,pi—1 of absolute value < %—: For z traversing the circle |z| = %— the
value of 1—2z427%? winds around the origin exactly once, so that 1—2z 4 z/+?

has exactly one root p; in |z| < 7::- . For later purposes we note that

3 5 . 3
|1—22+z’+2|>l +(—4—)| 7y for j>1 and |z|=—‘-1—.

Therefore

|Fi(2)] < Cy <§>(£) G)H <§$>H =0 (,,(é)) for any 17 > % . (23) |

The reader should observe that because of
2p ~—1-|-p’+2 (24)
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p; will be close to 1/2 for j getting large. More precisely, using. Lagrange’s
inversion formula, we have

1 1/k(G+2)\ 1 1 ]
O A I PEY SUEI R

k>1

Now it follows that

-1
2"p,,,, = —ZR.GS(F((Z); Z = p ) TnT ! / Fl( n-H ,
=1 ’

zl_—

where the integral is O(n(;) (%) ) for any n > ,l, with an absolute O-con-

stant. From this observation it is immediate that p,; may be substituted by

-1 - .
Gni = — Z Res(Fl(z); z= pj)pj'1 (2p;)7" (26)
=1

with exponentially small errors in expectation and variance. The computation
of the residues gives '

(1-4}) ()(1°—/)J)I—1 ,
(=) (-2+G+20)")

ij”

Res(Fi(z); z=pj) =

where (compare (24))

-1 -1 J—1

A=) = [T (1 =205 +07) " = T (o2 - 01%?) "

=0 1=0
1—(i+2 _ '
=p, (3 )/Q‘j(Pj]),
~(j+2)(I=1~j —1—j _
Bji = py UFPITII () ]/Ql—l—j (p57)-
Using formula (24) it can be shown by some straightforward algebra that

S N (i I e s S
" TG G )

(205)7"
(27)

I-1
= Z ar; (2p;)7", say.
=1
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This formula suggests the quantity

-1, "“I“jz—(‘—lz-j -1
Sy T T = b 2e)T (29)

=

(1_p§+1)j
lay j = (I+7+1)si,;
2t (1~u+1)”ﬂQbu,)%; T

with
JH+1 1

: | ‘
sty = (1 - p pj) (1 - pﬁ“) (—1)'p§-’)/Qz (p;')- (29)
Using Euler’s identity (7) '

Zsl‘, = H (1 -(1- ’H)p;") pj“ H (1 -(1- p1+])p;"+l> = 0. (30).
>0 m2>0 m2>0

Differentiating formula (7) we have

)t' 1 t
Zl —t(z am__t),};lo (1——;{17_:)’ (31)

>0 m20

so that, after a short computation,

lel,j— (1—p’+]) H (1— (l—pj-H)p;"). (32)

>0 m2>1

Altogether

(1 —P§+l>j+l J+HIy m
2 = (1 ~(J+ 1)/7’1”) Q; (p;") I;[; (1 BRI ) -
J m2Z

In the same way we derive

Z lb; = Q . where @
J

>;+1

= Qul2). Q;=Q;(2).  (34)
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The sum is up to a factor 14+ O(;277) the right hand side of (33). Theréforc

the series
S (20)7" D Har; —buy)

i 1241
converges absolutely and may be rearranged as ) gni—Tnt)-
1>1
It is easily seen that 5 (2p;)™"0(277) is o(1) for n — co. In order to get
j21 .
a sharper estimate we may apply Lemma 1: We have (2p;)"" = 1—46;, where
é; = O(277) so that

@00 = Y ()=t
k=0

i1 -

with f(k) = ) 5;‘0(2"). Since S 6;0(2—j) defines an analytic function for
321 121
Rz > -1 we find from Lemnma 1 that the whole sum is O(n~'*¢) for any ¢ > 0.

Thus the expectation E, of the content of the counter C after n tossings

fulfils
o= T+ o((3)) - S+ K =rad +0((2))
21 121 >
=ern,1+0(n"+‘), any €>0.
1>1 |

In order to evaluate S [, we approximate (2p;)~" by 1 —2777*
>

(compare (25)):

Ay = Z'((’lm)'" —(1- 2'1-2)") %?i
j21 J
n n ‘ PRI sz
= (—1)* s _o-UF2k) Xx
> (e T (- G

where (2p;)7' = 1-4;. From (31) we have 6}5—2"(”7)* = ()(j?'?jk?'j“'“”)

Qx .

) (6]’ - 2‘”'*”’) == is again an analyvtic
21 Qj

function for Rz > —1. Since f(0) = 0, [n;z]f(z) has a removable singularity
at z=0 and A, =0(n~'**). any € > 0.

= O(ch2'”k+”) so that f(z) =

=

R4
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We finally have

-1
E. = Z Irni+ O(n."]+‘) = Z lz bl,j‘(ij)_" + O(n'”")

>1 1>1 j=1
-1 '

=31y b (1-277Y) 4 0(n71 )

1>1 j=1 (35)
=Yl =Y tbo(3) +0(n7*)

1>1 1>1
= lta1+0(n7'79),

>

where t,; coincides with p,; from (6) for a =2, d = —;— Therefore E, from

this section coincides with E, from Section 2 with an error of order O(n"‘“") .

The same result may be proved for the variance V,, by an analogous reasoning.

THEOREM 4. The ezpected value E, of counter C after n coin tossings fulfils

_ > 1 14 |
E"___logzn+log2 5 }a+61(log2n)+0(n ), any € >0,

with.

1
a=) spr— ~16066....
k>1

The variance V,, fulfils for any € > 0

1 1 4r? ' 4m? 2 27?
Vo= — h — h 83(1
2log2 Tt log? 2 1<log2) log 2 2(logiZ) + b (logy )

+0 (n71%¢) = 0.7630. ..

with &8y, 63, hy, ho from Theorems 2 and 3.

Theorem 4 shows that our coin tossing algorithm is a very good simulation
of the general incremental procedure mentioned in the first two sections with
parameters b=1, d=1/2.

We finally compare these results with the following alternative variant of a
coin tossing algorithm: The Counter C is incremented by 1 if after another
flipping of the coin the sequence ends up with a run of C ones. With other
words, C maintains 1 plus the length of the longest run of ones. Results on

543
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this problem may be found e.g. in [9], [10]; the analysis is closely related to
Knuth's analysis of the average time for carry propagation in binary addition
[6]. Intuitively it is clear that the latter proposal leads to a less smooth behaviour
than our algorithm from above.

The regular expression corresponding to the set of sequences yielding a

counter C <1 is
{0,10,...,1"710} "{e,1,..., 17}

with corresponding generating function

1-2f

F(z) = 1—2z+4 21417

The dominating singularity is p, 1, ‘where p; fulfils (24). In Knuth’s analys1s
[6] the corresponding generating function is

1
Gi(z) = 122 4 12 )
The dominating singularity Ti—; of Gi(2) fulfils 71—1 = p1—1 +O(l 2‘2') , so that
Knuth’s asymptotic result on the expectation covers the coin tossing problem,
too. For comparison we cite the results from [6] and {10]:
‘Expectation E, and variance V,, of the counter C in the modified algorithm
are asymptotic to (neglecting the small periodic fluctuations of mean zero)

En~log2n+r6;;——2——%,
,r, - (36)
" log?2 + = - [6}], =~ 3.5070....
with §, from Theorem 2. Comparing wi_thk (16) we ﬁna that the variance in our
| 'fxlgorithm is smaller by oz.+ B = k§1,(57‘2_—1)7 ~ 2.7440... .
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