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A COIN TOSSING ALGORITHM FOR
COUNTING LARGE NUMBERS OF EVENTS

PETER KIRSCHENHOFER -- HELMUT PRODINGER

ABSTRACT . R. Morris has proposed a probabilistic algorithm to count up to n
using only about log e log e n bits. In this paper a slightly more general concept is
introduced that allows to obtain a smoother average case behaviour . This concept
is general enough to cover the analysis of an algorithm where the randomness is
simulated by coin tossings .

1 . Introduction

"Approximate counters" are realized by probabilistic algorithms that main-
tain an approximate count in the interval 1 to n using only about 10921092 n

bits. The algorithmic principle was proposed by R . M o r r i s [7] :
Starting with counter C = 1, after n increments C should contain a good

approximation to log e n . Thus C should be increased by 1 after other n in-
crements approximately. Since only C is known the algorithm has to base its
decision on the content of C alone .

The principle to increment the counter is now

C :=C+
0 with probability 1 - 2-c
1 with probability 2 -C
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F 1 a j o 1 e t [2) has analysed this algorithm in detail ; another method of
analysis has been proposed by the authors [4) . In [2; p. 127ff ] F 1 a j o 1 e t also
discusses variants of the incremental procedure (*), essentially replacing base 2
by base a . For a < 2 a smoother behaviour of the counter is obtained .

The aim of this paper is twofold .
(1) On the one hand we substitute (*) by an incremental process that adds

b to the counter with suitable probability . For a = 2 1 l b the resulting "automa-

ton" (compare Fig . 1) is closely related to Flajolet's smoothing procedure just
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described. Nevertheless we point out that our algorithm is slightly more general
and flexible enough to deal with a related problem described below .

(ii) On the other hand we describe a simple coin tossing algorithm that sim-
ulates the probabilities in (*) . We compare the results on this algorithm with
another one whose analysis is closely related to a problem studied by K n u t h
in the context of binary addition [6] . It turns out that the variance in our instance
is significantly smaller .

In Section 2 of this paper we present the analysis of the general incremental
principle mentioned in (i) above .

Section 3 refers to the coin tossing problems mentioned in (ii) . It turns out
that the analysis of the behaviour of these algorithms is essentially (i .e . with
neglectable error terms) covered by the analysis of Section 2 .

2 . A general incremental procedure

We consider the following incremental procedure . Starting with C' = 1 we
increment as follows (b is a fixed natural number, 0 < d < 2i /b ) .

C' := C' +
9 with probability 1 - d - 2 -C7b

1 with probability d • 2-C7b

(The constant d will be chosen appropriately later on .) To get a good approxi-
mation for log e n it is meaningful to rescale the countervalues of counter C' by
considerifig

532

A reformulation of the incremental procedure in terms of C reads

1 0
C :=C+ 1

b

with probability 1 - d • 2 -c - s+i

with probability d • 2 - c - a+ 1

We denote for abbreviation the possible counter values of C by

1
cj =1+~b

	

j=1,2,3, . . . .

Then we have for the transition c j --+ c1 . .1 the probability d - 2- j/' . In the
following we set

a = 2' lb .
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In order to illustrate the above concept we may use the following "automaton" :

1 - do' 1 - do - 2 1 - da -3

Q;(a) =
(1

Hi(z) =

Fig. I

The reader might observe that the instance d = 1 is the instance studied by
F 1 a j o 1 e t in [2 ; p . 127ff ] . In the following derivation we digress from Flajolet's
analysis after having established the probabilities as in formula (6) . Instead of
Flajolet's Mellin-type analysis we use a contour integral representation for the
alternating sums coming up (compare Lemma 1) .

Let pn, ' denote the probability to reach "state" cl in n steps and Hi(z) the
corresponding probability generating function, i .e .,

n>O

P,
n

I - da-1

With a, = 1 - da- ' it follows immediately from Figure 1 that

HI (z) =	1	 . da-1 z •

	

1

	

. da-2z . . .

	

I
1 - a1 z

	

1 - a2z

	

1 - alz

= dl - l a -(~) z r-1 n	
1

	

(2)
=1-11 1 - a ; z

Let

(1)

Hi(z)_	 Ar,j
- E 1-ajzj=I

(3)

denote the partial fraction decomposition of Hi(z) . It is a straightforward com-
putation to derive

Al' .

	

(4)Qj-1(a)QJ-j(a)

where

1 1-
1

	

1- 1

	

(5)a

	

a2

	

a'

533
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From (3) and (4) we find (interchanging j and 1 - j )

Pn,

1-1

J=0 QJ(a)QI-1-J(a)
(1 -daJ-I ) n

(-1)) a - (2)

BY the binomial theorem we may express p n ,l by an alternating sum:

n

	

1-1
Pn,l

	

n
=

	

k
(-1) k d

k=0

	

J=

Using Euler's famous partition identities [1]

=)ti = II 1 -
t

j>0

	

QJ(a)

	

m>0

	

am

and
- 1tj - ~

	

'Qj(a)

	

1
amj>0

	

m>0

the second sum in Pn,1 may be associated to a product .

En

Pn,

Now E 1 [t l]f(t) = f'(1), so that
1>0

534

	 ( 1 )J a-(2)+(J-t)k
Qj (a)Q1-1-j (a)

I

n

	

k

	

k-1
(-1) k a) [t1-il

	

1 - atmk=0

	

m=0

For the expectation En of the value of the counter C after n steps we find

1 n

	

n

	

d k

	

k-i

	

t
p - cl = 1+ bE k (-1) k a > 1 [tl] II 1-

a m1>1

	

k=0

	

1>0

	

m=0

(6)

(7)

(8)

(9)

1 n n

	

k d k

	

1
En = 1 - b

	

k
(-1) a Qk-1 (a) = 1 -

b
F n .

	

( 10)
k=1

An asymptotic evaluation of an alternating sum as in (10) may be performed
using the following



where
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LEMMA 1 . [8] Let C be a curve surrounding the points s, s + 1, . . . , n (s E hl )
in the complex plane and let f (z) be analytic inside C . Then

Extending the contour of integration it turns out that under suitable growth
conditions on f(z) (compare [3]) the asymptotic expansion of the alternating
sum is given by

Res([n ; z] f(z)) + 0 (n°+`) ,

	

any E > 0,

where the sum is taken over all poles z o different from s, . . . , n with Rzo > a .
k

In our sum we have s = 1 'and f(k) = d Q k - ( ) , which may be con-
s

tinued analytically by
Z

f(z) =

( d)
a()Qzi (a)- ,

n

(k)
( 1)kf(k)

	

21 i I[n;z]f(z)dz,
k-s

	

C

(-1) n - 1 n!
z(z - 1) . . .(z - n)

where

	

Q. (a) =	Q°°(a)	

(1 - az+j )
i>1

0

In order to find the residues of [n ; z) f (z) at the double pole z = 0 we use
the local expansions

[n ; z]--1(1+zHn)z
z

d ' 1 + z log d
a

	

a

1

	

1
Qz-1(a) ,.,	

io

	

1 + z(log a)z

		

2ga
where a.

k>1

With log a = 1-b log 2 we have the following contribution En ,o to E n

log. n + to + log. d -
2
- aa .

	

(11)
g a
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Near the simple poles :k

S10I1S

where

and the periodic function

536

PETER KIRSCHENHOFER - HELMUT PRODINGER

2A•7r i
lop; a = I (a) , k C Z k 4 0 .« e have the

( n )
71 _k

	

• r(-\k(a)) = e

c .X k (a) log d

1

	

1
Q=-1(a)

	

loga

	

- \k(a) ,

so that the poles Zk yield the following fluctuating contribution

r	1 r, ( - , k(a )) e2krri •log,(nd)

log a

In total we have

THEOREM 2 . The expected value E„ of the counter C after n random incre-
ments with the generalized incremental procedure (**) fulfilq

En =log2n+log')+l(9g2d+1- --
va +h1(log, TI+A) +O(I1- 1 ) ,

Q,Q _ _	 k-1

	

a b

k>1

2k,ri l og . i t .r(

	

X k ((1))

6 1 (x) _ - 1

	

- X k (a))e
2krir

log2 k#O

where
_ 2 k it i

Xk(a) log a

	

and

	

A = log, d .

	

D

Since

jr(iY)1 2
= y - sinh(iry) ,

we have lr(-Xk (a))12 = O (b e- ) for b --, oo, so that, the fluctuating term,

which is already very small for the classical case b = 1 , becomes evell smaller
for b getting large .

r

expan-

to -7„ :
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In order to find the appropriate value for the constant d we consider the
expectation S„ of 2c after n random increments :

S =

	

P,,,12" .

	

(12)

Since
Pn,i = Pn-l,1 (1 - da') +Pn-]1-Ida'-1

	

(13)

we have

sit =Sn_,-
2d
2d+ 2d, n>1 ;

	

So =2 ;
a

and thus

Sn =2d 1--
1
n+2 .

	

(14)
a

A good choice for d is therefore

d = 2(a- 1) ,

	

( 15 )

so that S n = n + 2 .
Nevertheless we can analyse the variance Vn of the content of C after n

steps for arbitrary d in an analogous manner as the expectation . E, . Omitting
the technical details we obtain, neglecting periodic fluctuations of mean 0,

7 f
2

	

Na
-

a s

	

1 - 2
Vn ti	- -

	

( 16)
6log 2 2

	

b2

	

b2 + 12b2

	

b~ o ,

where [b~ o is the mean of the square of the periodic function 61 (x) defined in
Theorem 2 .

In order to study the influence of b on Vn , it is helpful to make use of the
following remarkable transformation of the constant in (16) : We have

ak
o'a +0a

	

k - 1 2

	

h, (log a),
k

	

)

where
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Now it follows from Dedekind's functional equation for the q -function

(compare [5] ; observe the typo therein) . Thus we have

with

5.11 R

11,1(x) =

,r2

	

1

	

1

	

47x2

	

472
6x 2

	

2x + 24

	

x2 h.'

	

X )

7r 2

	

1

	

1

	

47x 2

	

4.r2

	

(18)ce a + /3n =

	

-
6 log

	

2 log a + 24

	

log
	 h,

(loga -g a

	

g a

On the other hand, again using jr(iy)1 2 =

	

	, we get
y • sinli(7ry)

[521
- log a

	

1

	

- 2 log a
h

	

27r 2
t o

	

loge 2 k> 1 k sinh
2k 7r2

	

loge 2 2 (log a
logog a

(_ 1) k-t
=

	

(20)k (ekZ - 1)
k>]

that

Combining (18) and (19) and regarding log a =
log 2 , we finally have

THEOREM 3 . The variance V, of the content of'the counter C after n steps
of the generalized incremental procedure (**) fulfils

=

	

1

	

1

	

47r2

	

47r 2 b

	

2

	

27r 2 b
V„

	

2b log 2 + 24b2 + log2 2
h,

log 2

	

b log 2 h2 (log 2

+53 ( loge n + A) + O
(logn)

,
n

where hl (x) and h2(x) are defined in (17) and (20), and where 53(x) is a
periodic function of mean zero, and O = loge d .

	

0

53(x) is a combination of 5i (x) and 52 (x), whose Fourier coefficients could
be computed in principle .

The reader should note that the main term is of order b-' in b ; the val-

ues h l l0 2 resp . h2 l0 2 tend to 0 exponentially fast in b . The result
g

	

g
quantifies the smoother behaviour of the approximate counting procedure for
increasing b . For d = 1 Theorem 3 should be compared with F 1 a j o 1 e t 's

result. [2; eq . (50)], where only the leading term	1 	appears .
2b log 2
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3 . Approximate counting by coin tossings

In this section we apply the previous results to the analysis of an approximate
counting algorithm where the incremental procedure (*) is simulated by coin
tossings . We flip a fair coin and increase the counter C by 1 after having
seen C consecutive heads occurring since the previous incremental step . More
formally the set of sequences yielding a counter C = 1 is described by the regular
expression

O*1{0,10}*11{0,10,110}* . . .11-1{0,10, . . .,11-10)*{E,1, . . .,11-1} .

The corresponding generating function equals

_ 1

	

z(z)
1-1

1 z
Fl(z)

	

(1 - z) 2

	

-- 2z + zi+2

	

(21)

so that the probability p,,,l that counter C = 1 after n tossings is

Pn,1 = 2-n [z'] F,(z) .

	

(22)

It is our aim to show that the analysis of this coin tossing algorithm may be
reduced to the analysis of Section 2 by approximating the probabilities p,,,l step
by step .

For 1 > 2, Fi(z) is a rational function having 1 - 1 first order poles

p1,. . . , p1-1 of absolute value < 4 : For z traversing the circle +zj = 4 the

value of 1 - 2z + zj+2 winds around the origin exactly once, so that 1 - 2z + zj+2

has exactly one root pj in jzj < 4 . For later purposes we note that

(1 2z

	

>-

	

+ zi +2 ~
3

1I 5

	

for 1- +( 4 I

	

64 j> and Izi = 4 .

Therefore

64 1-1 3

IF1(z)+
< C1

3 (1)(,) 1 7 1
4

	

4 5

	

= 0 (77(')) for any rl > 4 . (23)

The reader should observe that because of

2pj = 1 + pf+2 (24)

.539
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pi will be close to 1/2 for j getting large . More precisely, using . Lagrange's
inversion formula, we have

_ 1 1 +

	

1

C

k(j + 2)

	

1

	

_
Pi

	

2

	

k>1 k

	

k- 1

	

2k1J+ 2 )

Now it follows that
t-1 1

	

dz
2"pn,t =

	

R.es(F,(z) ; z = Pi)Pj n- ' +

	

Ft(`) zn+i '

I=I= 34
t

	

n
where the integral is O (77(W) (3)) for any r> >

4
, with an absolute O-con-

stant . From this observation it is immediate that pn ,t may be substituted by

j=1

qn,t = -
t-1

J=

1

	

1
2 1 + 1i+2 + ' .

Res(F,(z) ; z = Pj)Pj' (2pj)
-n

(25)

(26)

with exponentially small errors in expectation and variance. The computation
of the residues gives

1 - t

	

(G)

Res(Ft(z) ; Z = Pj) _

	

	P) pi (	
`j +1 Aj Bj,t ,

(1 - Pj) (-2 + (.7 + 2)P~ )

where (compare (24) )

Aj (1 - pj) -2 = 11(1 - 2pj + p~+2)
=

	

(Pi
+2

_ PI+2 )

1
i=0

	

i=O

=Pi

	

/qj(pi-, )

Bj,t = pi 0+2)(1-1 -j) (-1)t-1 -j Qi-1-j (pi, )

Using formula (24) it can be shown by some straightforward algebra that

1-1 (

	

) (
	 j

+1)1-1

	

2

	

( 2Pj)
1 - p~

	

1 - p~

	

(_1)t-1-ipJ
(t-

	

)

qn,t =

	

-n
1

j=1

	

(1 _ (j + 1)p~ +2 )

	

Qj (Pj 1) Qt-1-i (Pj )

t-1
at,j (2pj) n ,

	

say .
j=1

(27)
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This formula suggests the quantity

where

	

= Qk(2), as a good approximation of q n ,t . Indeed, we have

	 ( 1	

- p'+1) 7

lat, -

	

j

	

_

	

( 1 + J + 1 )st,j

t>j+1

	

(J + 1)p~~+Z ) Qj (Pi' 1 0

with ~

	

r)

sr,j = (1 - PI+' Pj) (1 - pj+ ') (-1)1 pi~ /Qt

Using Euler's identity (7)

1 - 1 - 7+l m

	

7+1 11 (1 -

	

- p~+1~ .~t =

	

(

	

(

	

Pj )P7) P7

	

7

1>0

	

m>0

	

m>0

Differentiating formula (7) we have

t-1

7=1

t>o

	

Ql(a)

so that, after a short computation,

p+1)

	

(1-(1-P). +1 )P~,
1
)

.

1>0

	

in>_ )

Altogether

+1j+ 1

lnt =_
	

C1-pj

	

pj+ I) p ill

+2

	

-1 11
1>j+1

	

(1 - (J + 1)Pj ) Qj (Pi ) m>1

In the same way we derive

1: 1 bi _ _ QO-

t>j+1

	

Q j

(7pj ) -n
QjQt-1-j j= 1

In -t ) 11 1-
m>0

	

m>0

t,j (2pj) -n

m+1
j

(29)

. (30) .

(32)

(33)

where Q r. = Qx (2) . Qj = Qj(2) .

	

(34 )
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with f (k) _

		

6 O(2 - J) . Since E &, O(2 -J) defines an analytic function for
j>1

	

j>1
Rz > --1 we find from Lemma 1 that the whole suns is 0(n -1 +`) for any - > 0 .

Thus the expectation E n of the content of the counter C after n tossiugs
fulfils

rW)

En

	

q",1 + 0
((3) 1,

)

_
1>1

Irn l+O('1 -1+c ),
1>1

In order to evaluate E I I'll,/ we approximate (2pj ) -1 by 1 - 2 -
l>1

(compare (25) ) :

PETER KIRSCHENHOFER - HELMUT PRODINGER

The sum is up to a factor 1 + O(j2 -) ) the right hand side of (33) . Therefore
the series 1` (2pj ) „

	

I (ar, j - br, j )
j>1

	

1>j+I

converges absolutely and may be rearranged as E I (qn,r - r,,,l) .
1>1

It is easily seen that E (2pj) - n 0(2 -J) is o(1) for n -+ oo . In order to get
j>1

a sharper estimate we may apply Lemma 1 : We have (2pj) -l = 1 - 6j , where
bj = 0(2 -J) so that

E (2p1)-n O(2-J )
j>1

"
j>1

1>1

n

k=0

i'",1 +

any e > 0 .

-2

(-1) k f(k)

1>1

((2, - "j) - 1 - 2 -)-2 ) n) Qx
J

(-1

	

(6k - ?-()+2)k) Q 1-

j>1 J

	

Qj

1(q,,,r - r,,,l) + 0(( 3 ) " )

where (2pj) -1 = 1-bj . From (31) we have fib -2-(j+2)k = 0(12-2Jk2-J(k-1))

= 0 k j- 2-J(k+1)) so that f (z) _

	

(6; - 2 -(j +2)-') Qx is again an analytic
j>1

	

QJ
function for Rz > -1 . Since f(0) = 0, [n ; z1 f(z) leas, a removable singularity
at z = 0 and 0„ = 0(71 - ' +- ) . any E > 0 .
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We finally have

r-1

r,,1 + Q(n-t+~) _

	

"

	

-t+E)
,i. ( 2Pi )

	

+ 0 (n
1>1

		

1>1

1-1

(1 - 2 -i-2 )" + 0(n -1+t )

r>1 .7=

	

(35)

lb1,o ( 4 )
n
+ 0(n -1+ `)1 tn ,

where t n, , coincides with Pn,1 from (6) for a = 2, d =
2

. Therefore En from

this section coincides with E n from Section 2 with an error of order 0(n-l +E)

The same result may be proved for the variance Vn by an analogous reasoning .

THEOREM 4 . The expected value En of counter C after n coin tossings fulfils

E„ = 1092 n +
	7 - 1 - a + 61 (1092 n) + 0 (n-1+`) ,

	

any c > 0,log 2 2

with

k>1

1
2k

The variance Vn fulfils for any e > 0

2

	

2

	

2
Vn

2 l0g2 + T4 + log2 2
h1

logg 2

	

log 2 h2 logg 2 + 63 (loge n)

+0 (n-1+E) -- 0.7630 . . .

with 61, 63, h 1 , h2 from Theorems 2 and 3 .

Theorem 4 shows that our coin tossing algorithm is a very good simulation
of the general incremental procedure mentioned in the first two sections with
parameters b = 1, d = 1/2 .

We finally compare these results with the following alternative variant of a
coin tossing algorithm: The Counter C is incremented by 1 if after another
flipping of the coin the sequence ends up with a run of C ones . With other
words, C maintains 1 plus the length of the longest run of ones . Results on

-- 1 .6066 . . . .
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It n, 1 + Q(n -1+f),
1>1
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this problem may be found e .g. in [9], [10] ; the analysis is closely related to
Knuth's analysis of the average time for carry propagation in binary addition
[6] . Intuitively it is clear that the latter proposal leads to a less smooth behaviour
than our algorithm from above .

The regular expression corresponding to the set of sequences yielding a
counter C < I is

{0,10, . . .,11-1Wf E,1, . . .,11-'}

with corresponding generating function

The dominating singularity is pl_1 , where p, fulfils (24) . In Knuth's analysis
[6] the corresponding generating function is

The dominating singularity TI_1 of GI(z) fulfils 7-1_ 1 = p1_1 4-0(12 -21 ) , so that
Knuth's asymptotic result on the expectation covers the coin tossing problem,
too. For comparison we cite the results from [6] and [10] :

Expectation E„ and variance V,, of the counter C in the modified algorithm
are asymptotic to (neglecting the small periodic fluctuations of mean zero)

loge
n + log 2

	

2 'g
2

	

1

	

(36)~

Vn ~ 6 loge 2 + 12 -
[6 l 0

	

3 .5070 . . .

with 5 1 from Theorem 2. Comparing with (16) we find that the variance in our
2 k

algorithm is smaller by a + Q =

	

2.7440 . . . .
k>1

.(2k - 1)2
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