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Abstract

A large class of q-distributions is defined on the stochastic model of Bernoulli trials
in which the probability of success (=advancing to the next level) depends geometrically
on the number of trials and the level already reached. If the depency is only on the level
already reached, this is an algorithm called approximate counting.

Two random variables, Xn (level reached after n trials) and Yk (number of trials
to reach level k) are of interest. We rederive known results and obtain new ones in a
consistent way, based on generating functions.

We also discuss asymptotics. The classical instance of approximate counting is more
interesting from a mathematical point of view. On the other hand, if the number of trials
also decreases the probability of success (advancing to the next level), then the limits are
constants which are straight-forward to compute.

1 Introduction

The Markov chain

P(Xn+1 = k + 1 | Xn = k) = qan+bk+c, P(Xn+1 = k | Xn = k) = 1− qan+bk+c

with the initial condition P(X0 = 0) = 1 was recently revisited by Charalambides [3], also
based on some earlier work [2]. We will adopt the notation pC(n, k) = P(Xn = k). So, this
process starts at time 0 in state 0, and the likelihood to advance to the next state decreases
both with time and level already reached.

Sometimes it is more convenient to start in state 1. This amounts to relabel the states
from 0, 1, . . . to 1, 2, . . . . Then parameters (a, b, c) must be changed to (a, b, c − b), to have
an equivalent model.

Crippa, Simon and Trunz [5] considered the special case

pCST (n, l) = λn,k−1pCST (n− 1, k − 1) + (1− λn,k)pCST (n− 1, k)

where λn,k = qa(n−1)+bk and either (a, b) = (1, 0) or (a, b) = (0, 1). The starting condition is
here pCST (0, 1) = 1.
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This recursion, with λn,k = qk−1, is known as approximate counting; this was originally
analysed by Flajolet [6].

We will reconsider in this paper the recursion

p(n, k) = qa(n−1)+b(k−1)+cp(n− 1, k − 1) +
(
1− qa(n−1)+bk+c

)
p(n− 1, k)

with one of the initial conditions p(0, 0) = 1 or p(0, 1) = 1, depending on the context.

The aim in this paper is to derive old and new results with a general approach that is
based on generating functions. In this way, we will recover as particular cases many results
from the literature.

We also discuss asymptotics. This is more interesting for a = 0, which is essentially
the approximate counting case, with an expectation of order n. There are several ways
to derive these results: Mellin transform (Flajolet [6]), Rice’s method (Kirschenhofer and
Prodinger [7]), analysis of extreme-value distributions (Louchard and Prodinger [8]), just
to name a few. If a > 0, then each failed attempt to advance results in an additional
punishment, and the expected level that will be reached is just a constant, which is given in
a straight-forward way by an infinite series involving the limits of the (explicit forms of the)
probabilities.

Before we start, we need to collect a few results from q-analysis. They can be found in
many textbooks, e.g., [1]. For our probabilistic interpretation, we always assume 0 < q < 1.

(x; q)n := (1− x)(1− xq) . . . (1− xqn−1);

for (q; q)n we sometimes write (q)n if no misunderstanding is possible. Furthermore we need
the Gaussian coefficients [

n

k

]
q

:=
(q)n

(q)k(q)n−k
;

they are polynomials in q and approach the binomial coefficients
(
n
k

)
as q → 1.

We also need [n]q := 1−qn

1−q and [n]q! := [1]q[2]q . . . [n]q = (q)n/(1− q)n.
Euler’s two partition identities:

∞∏
l=0

(1− uql) =
∞∑

t=0

(−1)tutq(
t
2)

(q)t
, (1)

∞∏
i=1

(1− tqi−1)−1 =
∞∑

u=0

1
(q)u

tu. (2)

q-binomial formulæ:

n∏
i=1

(u+ tqi−1) =
n∑

k=0

q(
k
2)

[
n

k

]
q

tkun−k, (3)

1
(t; q)n

=
∞∑

k=0

[
n+ k − 1

k

]
q

tk. (4)

We use the (now standard) notation [zn]f(z) to extract the coefficient of zn in the series
expansion of f(z), as well as Iverson’s notation [[P ]], which is 1 if P is true, and 0 otherwise.
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2 Flajolet’s explicit formula

Let us first rederive this formula [6, (46)] in the simplest way: we have

p(n, k) = qk−1p(n− 1, k − 1) +
(
1− qk

)
p(n− 1, k), p(0, 1) = 1.

We will use bivariate generating functions.
If we set

F (z, u) :=
∞∑

n=0

∞∑
k=0

znukp(n, k),

we derive
F (z, u)− u = zuF (z, qu) + zF (z, u)− zF (z, qu),

or
F (z, u) =

u

1− z
+
z(u− 1)

1− z
F (z, qu).

Iterating, this gives

F (z, u) =
u

1− z
+
z(u− 1)

1− z

uq

1− z
+
z(u− 1)

1− z

z(qu− 1)
(1− z)2

uq2

+
z(u− 1)

1− z

z(qu− 1)
1− z

z(q2u− 1)
(1− z)2

uq3 + · · ·

=
∞∑

j=0

(−1)jzj(u; q)juq
j

(1− z)j+1
. (5)

This expression is already in [5, eq. (17)] but only for the moments. It was independently
derived in [9], using a transformation formula due to Heine.

Now we have several ways of computing [znuk]F (z, u).

• First we write
(u; q)j =

(u; q)∞
(uqj ; q)∞

, (6)

and with Euler’s partition identity, we have

p(n, k) =
k−1∑
t=0

(−1)tq(
t
2)

(q)t(q)k−1−t

n∑
j=0

(−1)jq(k−1−t)jqj [zn−j ](1− z)−(j+1)

=
k−1∑
t=0

(−1)tq(
t
2)

(q)t(q)k−1−t
(1− qk−t)n, (7)

which is exactly Flajolet’s formula, [6, eq. (46)].

• Letting a = 0, c = 0, b = 1 in the formula [3, (3.2)], we obtain a second expression

pC(n, k) =
q(

k
2)

(q)k

n∑
j=k

(−1)j−k (q)j

(q)j−k

(
n

j

)
, pC(0, 0) = 1.
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This must be equivalent to Flajolet’s formula (with n in (7) replaced by n − 1, as
pC(0, 1) = 1).

We will give an independent proof of this fact.

p(n− 1, k) =
k−1∑
j=0

(−1)jq(
j
2)

(q)j(q)k−1−j
(1− qj−k)n−1 =

k∑
j=0

(−1)jq(
j
2)

(q)j(q)k−j
(1− qk−j)n.

Let us consider the generating function

S = [uk]F (z, u) =
∑
k≥0

xkp(n− 1, k)

=
∑
k≥0

xk
k∑

j=0

(−1)jq(
j
2)

(q)j(q)k−j
(1− qk−j)n

=
n∑

l=0

(
n

l

)
(−1)l

∑
k≥0

xk
k∑

j=0

(−1)jq(
j
2)

(q)j(q)k−j
q(k−j)l

=
n∑

l=0

(
n

l

)
(−1)l

∑
j≥0

(−1)jq(
j
2)

(q)j

∑
k≥j

xk 1
(q)k−j

q(k−j)l

=
n∑

l=0

(
n

l

)
(−1)l

∑
j≥0

(−1)jxjq(
j
2)

(q)j

∑
k≥0

(xql)k 1
(q)k

=
n∑

l=0

(
n

l

)
(−1)l 1

(xql; q)∞

∑
j≥0

(−1)jxjq(
j
2)

(q)j

=
n∑

l=0

(
n

l

)
(−1)l 1

(xql; q)∞
(x; q)∞

=
n∑

l=0

(
n

l

)
(−1)l(x; q)l.

On the other hand, let us start from the formula [3, eq. (3.2)]

pC(n, k) = q(
k
2)

n∑
j=k

(−1)j−k

[
j

k

]
q

(
n

j

)
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and consider the generating function

T =
∑
k≥0

xkpC(n, k) =
∑
k≥0

xkq(
k
2)

n∑
j=k

(−1)j−k

[
j

k

]
q

(
n

j

)

=
n∑

j=0

(
n

j

)
(−1)j

j∑
k=0

xkq(
k
2)(−1)k

[
j

k

]
q

=
n∑

j=0

(
n

j

)
(−1)j

j−1∏
l=0

(1− qlx)

=
n∑

j=0

(
n

j

)
(−1)j(x; q)j .

That ends the proof.

• A third expression for Flajolet’s formula consists in using a q-binomial in (5) to extract[uk−1].

First,

[uk]F (z, u) =
∑
j≥0

(−1)jzjqj

(1− z)j+1
[uk−1](u; q)j =

∑
j≥0

(−1)jzjqj

(1− z)j+1
q(

k−1
2 )

[
j

k − 1

]
q

(−1)k−1,

and consequently

p(n, k) = [zn]
∑
j≥0

(−1)jzjqj

(1− z)j+1
q(

k−1
2 )

[
j

k − 1

]
q

(−1)k−1 = q(
k−1
2 )(−1)k−1

n∑
j=k−1

(−1)j

[
j

k − 1

]
q

(
n

j

)
qj .

• A fourth expression involving q-Stirling numbers is proved in [5, (14)] by induction.
This can be directly done as follows:

First, we compute

∑
n

p(n, k)zn = q(
k−1
2 )(−1)k−1

∞∑
j=k−1

(−1)jzj

[
j

k − 1

]
q

qj 1
(1− z)j+1

= q(
k−1
2 ) q

k−1zk−1

(1− z)k

∞∑
j=0

[
j + k − 1
k − 1

]
q

( −qz
1− z

)j

= q(
k
2) zk−1

(1− z)k

1(−qz
1−z ; q

)
k

=
q(

k
2)zk−1

(1− z(1− q)) . . . (1− z(1− qk))
.

This formula was derived by Flajolet, using a direct combinatorial reasoning.
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Now we want to link this to q-Stirling numbers of the second kind (subset Stirling
numbers), defined by the recursion{

n

k

}
q

=
{
n− 1
k − 1

}
q

+ [k]q

{
n− 1
k

}
q

.

Let

bk(z) :=
∑

n

{
n

k

}
q

zn,

then

bk(z) = zbk−1(z) + [k]qzbk(z) =
zbk−1(z)
1− [k]qz

=
zk

(1− [1]qz) . . . (1− [k]qz)
.

Consequently{
n

k

}
q

= [zn]
zk

(1− [1]qz) . . . (1− [k]qz)
= (1−q)−n+k[zn]

zk

(1− z(1− q)) . . . (1− z(1− qk))

Comparing this with Flajolet’s generating function

∑
n

p(n, k)zn =
q(

k
2)zk−1

(1− z(1− q)) . . . (1− z(1− qk))

we find that

p(n, k) = q(
k
2)(1− q)n+1−k

{
n+ 1
k

}
q

.

The moments of (7) will be discussed in Section 4.

3 Analysis of Xn. General formulæ, with a, b, c ≥ 0.

3.1 General case

Assume as always 0 < q < 1, which implies 0 ≤ qan+bk+c ≤ 1. Again, let us rederive the
formula in the simplest way. We have

p(n, k) = qa(n−1)+b(k−1)+cp(n− 1, k − 1) +
(
1− qa(n−1)+bk+c

)
p(n− 1, k), (8)

and if we set

F (z, u) :=
∞∑

n=0

∞∑
k=0

znukp(n, k),

we derive

F (z, u)−F (z, 0)−
∞∑

j=1

p(0, j)uj = qczuF (qaz, qbu)+z[F (z, u)−F (z, 0)]−zqc[F (qaz, qbu)−F (qaz, 0)],

or
F (z, u) =

G(z, u)
1− z

+
z(u− 1)qc

1− z
F (qaz, qbu),
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with

G(z, u) := (1− z)F (z, 0) + zqcF (qaz, 0) +
∞∑

j=1

p(0, j)uj .

Iterating, this gives

F (z, u) =
G(z, u)
1− z

+
z(u− 1)qc

1− z

G(qaz, qbu)
1− qaz

+
z(u− 1)qc

1− z

qaz(qbu− 1)qc

1− qaz

G(q2az, q2bu)
1− q2az

+
z(u− 1)qc

1− z

qaz(qbu− 1)qc

1− qaz

q2az(q2bu− 1)qc

1− q2az

G(q3az, q3bu)
1− q3az

+ · · ·

=
∞∑

j=0

zjqcj(−1)j(u; qb)jq
a(j

2)

(z; qa)j+1
G(zqja, uqjb). (9)

It is convenient to start with 1 at 0, p(0, 1) = 1, so G(z, u) = u and F (z, 0) = 0. Then

F (z, u) =
∞∑

j=0

zjqcj(−1)j(u; qb)jq
a(j

2)

(z; qa)j+1
uqjb.

Therefore,

[uk]F (z, u) =
∞∑

j=0

zjqcj(−1)jqjbqa(j
2)

(z; qa)j+1
[uk−1](u; qb)j

=
∞∑

j=0

zjqcj(−1)jqjbqa(j
2)

(z; qa)j+1
qb(k−1

2 )(−1)k−1

[
j

k − 1

]
qb

and so

p(n, k) = [znuk]F (z, u)

= qb(k−1
2 )(−1)k−1

∞∑
j=0

qcj(−1)jqjbqa(j
2)

[
j

k − 1

]
qb

[zn−j ]
1

(z; qa)j+1

= qb(k−1
2 )(−1)k−1

n∑
j=k−1

(−1)j

[
j

k − 1

]
qb

[
n

j

]
qa

qa(j
2)qcjqbj . (10)

The quantity pC(n, k− 1) from [3] corresponds to p(n, k) as given by (8), with c replaced
by c− b. Consequently

pC(n, k) = p(n, k + 1) = qb(k
2)

n∑
j=k

(−1)j−kqa(j
2)+cj

[
n

j

]
qa

[
j

k

]
qb

. (11)

This proves the formula [3, (3.2)] in a simpler way.
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We can derive a simple new expression from (6) and (9):

p(n, k) =
k−1∑
t=0

(−1)tqb(t
2)

(qb; qb)t(qb; qb)k−1−t

n∑
j=0

(−1)jqb(k−1−t)jqcjqbjqa(j
2)[zn−j ]

1
(z; qa)j+1

=
k−1∑
t=0

(−1)tqb(t
2)

(qb; qb)t(qb; qb)k−1−t

n∑
j=0

(−1)jqb(k−t)jqcjqa(j
2)

[
n

j

]
qa

=
k−1∑
t=0

(−1)tqb(t
2)

(qb; qb)t(qb; qb)k−1−t

n∑
j=0

(−1)jqb(k−t)jqcj [tj ]
n∏

i=1

(1 + tqa(i−1))

=
k−1∑
t=0

(−1)tqb(t
2)

(qb; qb)t(qb; qb)k−1−t

n∏
i=1

(1− qb(k−t)qcqa(i−1))

=
k−1∑
t=0

(−1)tqb(t
2)

(qb; qb)t(qb; qb)k−1−t
(qb(k−t)+c; qa)n. (12)

Remark. We also obtain p(n, k) from [4, (24)] , with the changes α = b, β = a, γ = c−a.
Crippa and Simon start with 1 at 1, so we must change their n into n−1 and our c into c+a.

3.2 Case a = 1, b = 0, c = 0.

For that instance, Crippa et al. also establish (by induction) a connection to q-Stirling
numbers. We rederive how this can be done. However, here, we adopt the initial condition
p(0, 0) = 1.

Here is the recursion again for the special case:

p(n, k) = qn−1p(n− 1, k − 1) +
(
1− qn−1

)
p(n− 1, k). (13)

Now define
an(u) =

∑
k

p(n, k)uk,

then
an(u) = uqn−1an−1(u) +

(
1− qn−1

)
an−1(u) = (1 + qn−1(u− 1))an−1(u)

and thus

an(u) =
n−1∏
i=0

(1 + qi(u− 1)).

Consider q-Stirling numbers recursively defined by

s(n, k) = s(n− 1, k − 1) + [n− 1]qs(n− 1, k).

Let
bn(u) =

∑
k

s(n, k)uk,

then

bn(u) = ubn−1(u) + [n− 1]qbn−1(u) =
n−1∏
i=1

(u+ [i]q).
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Therefore (we introduce the q-dependency explicitly)

s(n, k, 1/q) = [uk]bn(u) = [uk]
n−1∏
i=1

(
u+

1− 1/qi

1− 1/q

)
= q−(n

2)[uk]
n−1∏
i=1

(
uqi +

qi − 1
q − 1

q

)

= q−(n
2)

(
q

1− q

)n−1

[uk]
n−1∏
i=1

(
u(1− q)qi−1 + 1− qi

)
= q−(n

2)
(

q

1− q

)n−1+k

[uk]
n−1∏
i=1

(
uqi + 1− qi

)
= q−(n

2)
(

q

1− q

)n−1+k

p(n, k),

hence

p(n, k) = q(
n
2)

(
1− q

q

)n−1+k

s(n, k, 1/q).

Remark. For a = b, simplification is possible:

p(n, k + 1) = qb(k
2)

n∑
j=k

(−1)j−kqb(j
2)+cj

[
n

j

]
qb

[
j

k

]
qb

= qb(k
2)

[
n

k

]
qb

n∑
j=k

(−1)j−kqb(j
2)+cj

[
n− k

j − k

]
qb

= qb(k
2)+ck

[
n

k

]
qb

n−k∑
j=0

(−1)jqb(j+k
2 )+cj

[
n− k

j

]
qb

= q2b(k
2)+ck

[
n

k

]
qb

n−k∑
j=0

(−1)jqb(j
2)+bjk+cj

[
n− k

j

]
qb

= q2b(k
2)+ck

[
n

k

]
qb

n−1∏
i=k

(
1− qbi+c

)
= q2b(k

2)+ck

[
n

k

]
qb

(qbk+c; qb)n−k.

Specializing further, for b = 0 and c = 1, this becomes
(
n
k

)
qk(1− q)n−k, which is of course

evident.
If we let b = c = 1, we get p(n, k + 1) = qk2 (q)2n

(q)2k(q)n−k
. Letting n tend to infinity and

noticing that the probabilities sum to 1, we get

∑
k≥0

qk2

(q)2k
=

1
(q)∞

.

This is due to Euler and occurs when enumerating partitions according to Durfee squares [1].
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4 The moments

4.1 General case

The moments are derived from F (z, u). We have, starting with 1 at 0 and b > 0,

E[Xi
n] =

n∑
j=i−1

qcj(−1)j

[
n

j

]
qa

qa(j
2)qbj ∂

i(u(u; qb)j)
∂ui

∣∣∣∣
u=1

.

This leads easily to

E[Xi
n] = i!

n∑
j=i−1

qcj(−1)j−1

[
n

j

]
qa

qa(j
2)qbj(qb; qb)j−1×

×

 ∑
1≤s1<···<si−2<j

qbs1 . . . qbsi−2

(qbs1 − 1) . . . (qbsi−2 − 1)

+
∑

1≤s1<···<si−1<j

qbs1 . . . qbsi−1

(qbs1 − 1) . . . (qbsi−1 − 1)

 . (14)

For instance

E(Xn) = 1 +
n∑

j=1

qcj(−1)j−1

[
n

j

]
qa

qa(j
2)qbj(qb; qb)j−1, (15)

E[X2
n] = 2

n∑
j=1

qcj(−1)j−1

[
n

j

]
qa

qa(j
2)qbj(qb; qb)j−1

[
1 +

j−1∑
l=1

qbl

qbl − 1

]
, (16)

E[X3
n] = 3!

n∑
j=2

qcj(−1)j−1

[
n

j

]
qa

qa(j
2)qbj(qb; qb)j−1

j−1∑
l=1

qbl

qbl − 1
+

∑
1≤s<l<j

qblqbs

(qbl − 1)(qbs − 1)

 .
Remark. Using a univariate generating function, Crippa and Simon get the first 2

moments in [4, (27), (28)]. For a = 0, the first 2 moments are given by everybody who wrote
about approximate counting.

Remark. Charalambides [3, (3.4) and (3.5)] also computes the first 2 moments, by a
lengthy derivation.

4.2 Particular cases

Two particular cases are interesting.

• For b = 1, a = 0, c = 0, we get immediately the moments of approximate counting:

E[Xi
n] = i!

n∑
j=i−1

(−1)j−1

(
n

j

)
qj(q)j−1

×

 ∑
1≤s1<···<si−2<j

qs1 . . . qsi−2

(qs1 − 1) . . . (qsi−2 − 1)
+

∑
1≤s1<···<si−1<j

qs1 . . . qsi−1

(qs1 − 1) . . . (qsi−1 − 1)

 .
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Remark. [5, Theorem 5] gives the first 2 moments.

Let us briefly review how one can get dominant and periodic parts of the moments
of approximate counting. As already mentioned, Flajolet derives results for the first 2
moments using the Mellin transform; Kirschenhofer and Prodinger did the same with
Rice’s method. Using the methods in our recent paper [8, sections 4.5 and 5.5], all
moments can be almost automatically derived. This gives, with the notations

Q := 1/q,
L := ln(Q),

log := logQ,

χl =
2πi
l
,

E(Xn − log n) = m̃1 + w1,

E(Xn − log n)2 = µ̃2 + κ2,

E(Xn − log n)3 = µ̃3 + κ3,

Ck :=
∞∑

j=1

1/(Qj − 1)k

the following expressions

m̃1 = 1/2− C1 + γ/L,

µ̃2 = π2/(6L2) + 1/12− C1 − C2,

µ̃3 = 2ζ(3)/L3 − 2C3 − 3C2 − C1,

w1 = −
∑
l 6=0

Γ(χl)e
−2lπi log n/L,

κ2 = −w2
1 − 2γw1/L+ 2

∑
l 6=0

Γ(χl)ψ(χl)e
−2lπi log n/L2,

κ3 = w1(4L2w2
1 + 12w1Lγ + 6γ2 − π2)/(2L2)

− 6(γ + w1L)
∑
l 6=0

Γ(χl)ψ(χl)e
−2lπi log n/L3

− 3
∑
l 6=0

Γ(χl)ψ
2(χl)e

−2lπi log n/L3 − 3
∑
l 6=0

Γ(χl)ψ(1, χl)e
−2lπi log n/L3.

Remark. The (not surprising) fact that E[Xi
n] ∼ (log n)i in general, can also be

deducted from Rice’s method. We do not give a full proof of this but rather sketch a
few key steps. It is of course equivalent to consider the factorial moments instead.

E[Xi
n] = i!

n∑
j=i−1

(−1)j−1

(
n

j

)
qj(q)j−1

×

 ∑
1≤s1<···<si−2<j

qs1 . . . qsi−2

(qs1 − 1) . . . (qsi−2 − 1)
+

∑
1≤s1<···<si−1<j

qs1 . . . qsi−1

(qs1 − 1) . . . (qsi−1 − 1)

 .
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Now,

∑
1≤s1<···<si−1<j

qs1 . . . qsi−1

(qs1 − 1) . . . (qsi−1 − 1)
=

1
(i− 1)!

∑
1≤s<j

(
qs

(qs − 1)

)i−1

+ less important terms

and thus we study

i(−1)i−1
n∑

j=i−1

(−1)j−1

(
n

j

)
qj(q)j−1

∑
1≤s<j

(
qs

1− qs

)i−1

.

The method (which is described in many textbooks, e. g., [10]) consists in continuing
the function

qj(q)j−1

∑
1≤s<j

(
qs

1− qs

)i−1

to the complex plane, to ψ(z), say, and then computing the residue of

i(−1)i−1 Γ(n+ 1)
Γ(n+ 1− z)Γ(−z)

ψ(z)

at s = 0. Observe that∑
1≤s<j

(
qs

1− qs

)i−1

=
∑
s≥1

(
1

Qs − 1

)i−1

−
∑
s≥1

(
1

Qs+j−1 − 1

)i−1

so, we use the function

ψ(z) =
(q)∞

(qz)∞(Qz − 1)

[ ∑
s≥1

(
1

Qs − 1

)i−1

−
∑
s≥1

(
1

Qs+z−1 − 1

)i−1
]
.

The computation of this residue leads to several terms, since the pole is of order i+ 1.
However, the dominant term that comes out is (log n)i.

• Another interesting case is b = 0. If we set qb = 1− ε, this leads to (qb; qb)j ∼ εjj! and
qbs1

(qbs1−1)
∼ 1

−εs1
. After a little algebra, we obtain

E[Xi
n] = i!qc(i−1)

[
n

i− 1

]
qa

qa(i−1
2 ).

Remarks. Our result include the following special cases:

For a = 1, b = 0, c = 0, [5, (22), (23)], derived there by induction.

The formulæ [4, (25), (26)], with b = 0 are immediate.

[3, Theorem 3.2] is also immediate.
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4.3 q-factorial moments

The q-factorial moments in the general case are given in [3, (3.3)]: The formula is

E
[
(Xn)m,qb

]
=

1− qbm

(1− qb)m
qb(m

2 )
n∑

j=m

(−1)j−mqa(j
2)+cj

[
n

j

]
qa

[
j

m

]
qb

(qb; qb)j−1.

If a > 0, this quantity converges to the constant, as n→∞

1− qbm

(1− qb)m
qb(m

2 )
∞∑

j=m

(−1)j−mqa(j
2)+cj 1

(qa; qa)j

[
j

m

]
qb

(qb; qb)j−1.

Notice that E
[
(Xn)m,qb

]
simplifies for b = 0, as in the sum only the term with j = m

survives, with the result m!qa(m
2 )+cm

[
n
m

]
qa . This was derived in [3] in a separate theorem,

but is follows readily from the general case. (See the remark above).

5 Asymptotics of the moments of Xn for n →∞
While the qb-moments of Xn are quite easy to deal with, as shown above, the proper ones are
a bit harder. The results are again constants, but they don’t look as pretty as the previous
ones.

5.1 General case

Letting n→∞, we obtain from (11)

pC(∞, k) =
q(a+b)(k

2)+ck

(qb; qb)k

∞∑
v=0

(−1)vqa[v2+v(2k−1)]/2+cv (qb; qb)k+v

(qb; qb)v(qa; qa)k+v
.

From (10), we have

p(∞, k + 1) =
q(a+b)(k

2)+bk+ck

(qb; qb)k

∞∑
v=0

(−1)vqa[v2+v(2k−1)]/2+bv+cv (qb; qb)k+v

(qb; qb)v(qa; qa)k+v
.

We study the behaviour of the factorial moments:

E
[
Xi
∞

]
=

∞∑
k=0

k(k − 1) . . . (k − i+ 1)p(∞, k). (17)

From (14) we derive, with a > 0,

E[Xi
∞] = i!

∞∑
j=i−1

qcj(−1)j−1 1
(qa; qa)j

qa(j
2)qbj(qb; qb)j−1×

×

 j−1∑
s1=1

. . .

j−1∑
si−2=1

[[s1 < s2 < . . . < si−2]]
qbs1 . . . qbsi−2

(qbs1 − 1) . . . (qbsi−2 − 1)

+
j−1∑
s1=1

. . .

j−1∑
si−1=1

[[s1 < s2 < . . . < si−1]]
qbs1 . . . qbsi−1

(qbs1 − 1) . . . (qbsi−1 − 1)

 .
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For instance,

E(X∞) = 1 +
∞∑

j=1

qcj(−1)j−1 1
(qa; qa)j

qa(j
2)qbj(qb; qb)j−1,

E[X2
∞] = 2

∞∑
j=1

qcj(−1)j−1 1
(qa; qa)j

qa(j
2)qbj(qb; qb)j−1

[
1 +

j−1∑
l=1

qbl

qbl − 1

]
.

Remark. For b = 0, mean and E[(X2
∞)] are derived in [4].

5.2 Case a = 1, b = 0, c = 0.

From (10), we derive in this case (a = 1, b = 0, c = 0)

pC(∞, k) = p(∞, k + 1) = q(
k
2)

∞∑
v=0

(−1)vq[v
2+v(2k−1)]/2

(
k+v

v

)
(q)k+v

.

The limit when n→∞ is independent of n and not Gaussian (as was suggested in [5]).
In the following, we give an independent proof that p(∞, 1) = 0 and that the p(∞, k) sum

to 1.

p(∞, 1) =
∞∑

v=0

(−1)vq(
v
2) 1

(q)v
= (1; q)∞ = 0,

by Euler. And now

SUM =
∑
k≥0

q(
k
2)

∞∑
v=0

(−1)vq[v
2+v(2k−1)]/2

(
k+v

v

)
(q)k+v

=
∑

k,v≥0

q(
k+v

2 )(−1)v

(
k+v

v

)
(q)k+v

=
∑
n≥0

q(
n
2)

(q)n

n∑
v=0

(−1)v

(
n

v

)

=
∑
n≥0

q(
n
2)

(q)n
[[n = 0]] = 1.

5.3 Other expression

Charalambides [3, (2.11)] expresses the moments in the terms of q-Stirling numbers:

E
[
Xi
∞

]
= i!

∞∑
r=i

(−1)r−i(1− qb)r−i (1− qb)r

(qb; qb)r
E

[
(X∞)r,qb

]
sqb(r, i).
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5.4 Tail

When k →∞, p(∞, k) leads to the asymptotic equivalent for the tail

pC(∞, k) ∼ q(a+b)(k
2)+ck

(qa; qa)∞
.

If (a, b) 6= (0, 0), this can be simplified (with less precision) to

pC(∞, k) ∼ q(a+b)k2/2

(qa; qa)∞
.

Also

PC(∞, k) :=
∞∑

i=k

p(∞, i) ∼ q(a+b)(k
2)+ck

(qa; qa)∞
.

6 Analysis of Yk (time to reach k)

6.1 General case and asymptotics

The probability qC(n, k) is given in [3, (4.1), (4.2)] by a rather complicated expression, which
can be simplified as

qa/2(2n−2+k2)+ck+b(k
2)

n−k∑
v=0

qa/2[k(2v−3)+(v−1)(v−2)]+cv(−1)v (qa; qa)n−1

(qa; qa)n−v−k(qa; qa)v+k−1

(qb; qb)v+k−1

(qb; qb)v(qb; qb)k−1
.

(18)
Actually, it is simply given, with (11), by

qC(n, k) = pC(n− 1, k − 1)qa(n−1)+b(k−1)+c.

Indeed, (11) leads to

pC(n, k) = qb(k
2)

n∑
j=k

(−1)j−kqa(j
2)+cj

[
n

j

]
qa

[
j

k

]
qb

= qb(k
2)

n∑
j=k

(−1)j−kqa(j
2)+cj (qa; qa)n

(qa; qa)j(qa; qa)n−j

(qb; qb)j

(qb; qb)k(qb; qb)j−k

= qckq(b+a)(k
2)

n−k∑
v=0

(−1)vqa/2[v2+v(2k−1)]qcv (qa; qa)n

(qa; qa)v+k(qa; qa)n−v−k

(qb; qb)v+k

(qb; qb)k(qb; qb)v
.

Now we compute a suitable type of moments to get nice results. As was discussed by
Charalambides [3], it does not really matter which type of moments one computes, as one
can always convert.

As already mentioned,

qC(n, k) = qa(n
2)+b(k

2)+cn−a(n−1
2 )−c(n−1)

n∑
j=k

(−1)j−kqa(j−1
2 )+c(j−1)

[
n− 1
j − 1

]
qa

[
j − 1
k − 1

]
qb
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or in simplified form:

qC(n, k) = qa(n−1)+b(k
2)

n∑
j=k

(−1)j−kqa(j−1
2 )+cj

[
n− 1
j − 1

]
qa

[
j − 1
k − 1

]
qb

.

Which type of moments shall we choose in order to get an appealing result?∑
1≤j≤n

qa(n−1)+a(j−1
2 )+cj

[
n− 1
j − 1

]
qa

(−1)j
∑

1≤k≤j

(−1)kqb(k
2)

[
j − 1
k − 1

]
qb

Θm(k)

Θm(k) must be a suitable “polynomial” of k of degree m, so that we can sum the inner sum:

S =
∑

1≤k≤j

(−1)kqb(k
2)

[
j − 1
k − 1

]
qb

Θm(k) = NICE.

We may choose Θm(k) = (qb; qb)k−1/(qb; qb)k−1−m =
∏k−1

i=k−m(1− qbi), which is a qb-factorial.
Then,

S =
j−1∏

i=j−m

(1− qbi)
∑

m+1≤k≤j

(−1)kqb(k
2)

[
j −m− 1
k −m− 1

]
qb

.

So we are left with

S =
(qb; qb)j−1

(qb; qb)j−m−1
(−1)m+1

∑
0≤k≤j−m−1

(−1)kqb(k+m+1
2 )

[
j −m− 1

k

]
qb

=
(qb; qb)j−1

(qb; qb)j−m−1
(−1)m+1qb(m+1

2 ) ∑
0≤k≤j−m−1

(−1)kqb(k
2)

[
j −m− 1

k

]
qb

qbk(m+1).

But we have the formula

n∑
k=0

qb(k
2)

[
n

k

]
qb

tkun−k =
n−1∏
i=0

(u+ tqbi).

This applies for n = j −m− 1, u = 1, t = −qb(m+1):

S =
(qb; qb)j−1

(qb; qb)j−m−1
(−1)m+1qb(m+1

2 )
j−m−2∏

i=0

(1− qb(i+m+1))

=
j−1∏

i=j−m

(1− qbi)(−1)m+1qb(m+1
2 )

j−1∏
i=m+1

(1− qbi)

= (−1)m+1qb(m+1
2 )(qb; qb)j−1

[
j − 1
m

]
qb

.

Then the moment becomes

qa(n−1)+b(m+1
2 ) ∑

m+1≤j≤n

qa(j−1
2 )+cj

[
n− 1
j − 1

]
qa

(−1)j−m−1(qb; qb)j−1

[
j − 1
m

]
qb

.
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Remark. In the notation of [3], the moment just computed is

(1− qb)m
∑

k

[k − 1]m,qbqC(n, k).

The result is

E([Yk−1]m,qb) =
1

(1− qb)m
qa(n−1)+b(m+1

2 ) ∑
m+1≤j≤n

qa(j−1
2 )+cj

[
n− 1
j − 1

]
qa

(−1)j−m−1(qb; qb)j−1

[
j − 1
m

]
qb

.

If b = 0, only one term in the sum survives, and this yields

m!qa(n−1)+a(m
2 )+cm

[
n− 1
m

]
qa

.

When k →∞, we have the asymptotic equivalent

qC(n, k) ∼ qa/2(2n−2+k2)+ck+b(k
2)

n−k∑
v=0

qa/2[k(2v−3)+(v−1)(v−2)]+cv(−1)v 1
(qa; qa)n−v−k(qb; qb)v

,

and setting n = k + u, this gives

qC(k + u, k) ∼ qa/2(−k−2+k2)+ck+b(k
2)+au

u∑
v=0

qa/2[2vk+(v−1)(v−2)]+cv(−1)v 1
(qa; qa)u−v(qb; qb)v

∼ q(a+b)(k
2)+ck+au 1

(qa; qa)u
.

But we must normalize by PC(∞, k); this gives the conditional probability

qau

(qa; qa)u
(qa; qa)∞, (19)

independent of b. This is a a decent function of u. Indeed by (2), with t = qa,

∞∑
u=0

qau

(qa; qa)u
=

∞∏
i=1

(1− qaqa(i−1))−1 =
∞∏
i=1

(1− qai)−1 =
1

(qa; qa)∞
,

as it should. So we can write the normalized hitting time Yk = k + U , where U is a random
variable with probability function (19).

We have the normalized moments:

E(Y i
k ) ∼

∞∑
u=0

qau

(qa; qa)u
(qa; qa)∞(k + u)i =

i∑
v=0

∞∑
u=0

qau

(qa; qa)u
(qa; qa)∞

(
i

v

)
ki−vuv, k →∞.

(20)
Remark.

i∑
v=0

∑
u≥0

qau

(qa; qa)u
(qa; qa)∞

(
i

v

)
ki−vuv = (qa; qa)∞

i∑
v=0

(
i

v

)
ki−v

∑
u≥0

qau

(qa; qa)u
uv
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Let us write r = qa. What we need is ∑
n≥0

tn

(r; r)n

then the inner sum can be obtained via a few differentiations, and t := r. The sum can be
written as a product, by Euler’s partition identity. However, multiple differentiations lead to
iterated sums, and that is all we can do with it.

6.2 Other expression

After normalization, [3, (4.3)] leads, for k →∞,

E
[

(qa; qa)Yk+m−1

(qa; qa)Yk−1(1− qa)m

]
∼ (1− qa)m+2k. (21)

7 Conclusion

Using generating functions, we have rederived known results and obtained new ones on q-
distributions, in an unified and consistent way.

Other forms for the transition probabilities are possible: for instance, in [4], the transition
is related to 1 − qan+bk+c (as opposed to qan+bk+c, as in this paper). These generalizations
will be the object of future work.
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