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Abstract. In this paper, we give exaci and asymptotic approximations for the variance of the
external path length in a symmetric Patricia tree. The problem was open up to now. We prove
that for the binary Patricia tree, the variance is asymptotically equal to 0.37...-n+nP(log,n)
where n is the number of stored records and P(x) is a periodic function with a very small
amplitude. This implies that the external path length is asymptotically equal to n-log,n with
probability one (i.e., almost surely). These results are next used to show that from the practical
{average) viewpoint, the Patricia tree does not need to be restructured in order to keep it balanced.
In general, we ask to what extent simpler and more direct algorithms (for digital search trees)
can be expected in practice to match the performance of more complicated, worst-case asymptoti-
cally better ones.

i. Introduction

The optimization of the asymptotic worst-case performance is a major aim in the
design of most algorithms. In this endeavor lots of insightful, elegant and clever
constructions have been made. Along these lines, however, the algorithmic design
has often to be targeted at coping efficiently with quite unrealistic, if not pathological,
inputs and the possibility is neglected that a simpler algorithm might perform just
as well, or even better, in practice. A remedy to this situation is to reconsider the
algorithm from the (more natural) average complexity viewpoint. This approach
can give a more realistic picture of the overall behavior of an aigorithm. In this
paper, we apply this strategy to study digital search trees (e.g., Patricia tries) and
ask how well on the average these trees are balanced. We will argue that the variance
of the external path length in digital search irees is a good measure of the balancing
property of the trees.

* A preliminary version of this paper appears in the Proceedings of ICALP 88. Tampere 1988.
** The research was supported in pari by the National Science Foundation under Grant NCR-8702115.
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In 1979, Fagin et al. [2] proposed extendible hashing as a fast access methioa for
dynamic files. In the original version of this method, radix search trees (tries in
short) have been used to access digital keys (records). In addition, another procedure
was used to balance the tree in order to achieve good worst-case performance. Do
we really need to balance the tree? Before we answer this question, let us first
consider another, more efficient data structure, namely the Patricia tries for accessing
the keys. The Patricia trie was discovered by D.R. Morrison (see [1, 4, 9]), who
suggested how to avoid an annoying flaw of regular t~*es, namely, one-way branching
on internal nodes. To recall, a regular irie is a data structure that uses the digital
properties of keys. It consists of internal nodes and external nodes. The internal
nodes are used to branch a key (e.g., “go left™, if the next digit of a key is 0, and
“go right” if the next digit is 1), while external nodes contain the minimal prefix
information of keys {records). In the Pairicia trie, all one-way branches are collapsed
on internal nodes, that is, ail unary branching nodes are eliminated (for more
detailed discussion, see [4, 9]). As with regular tries, the Patricia must be accom-
panied by an additional procedure in order to balance it, and to achieve good
worst-case performance. This restructuring generally changes the entire tree and is
rather an expensive operation (compare also binary search trees and AVL trees).
Again, the question is whether we really need to balance the Patricia trie. We answer
that question from the average complexity viewpoint. Finally, we note that digital
search tries find many other applications in computer science and teiecommunica-
tions such as partial match retrieval of multidimensional data, conflict resolution
algorithms for broadcast communications [10], radix exchange sort, polynomial
factorization, simulation [4, 9], lexicographical sorting [1, 14].

Two quantities of a digital trie are of special interest, depth of a leaf (search time)
and the external path length. The average depth of a ieaf for regular tries and Patricia
trie has been studied in [3, 6, 9, 11, 13], the variance in [6, 11, 13] and the higher
moments in [11, 13]. The average value of the external path length is closely related
to the average depth of a leaf, but not the variance. The first attempt to compute
the variance was reported in [6], however, it turned out that the variance of the
successful search time was timated, no. the variance of the external path length.
This was rectified by Kirschenhofer et al. in [8], who obtained the correct value for
the variance in the symmetric regular tries. In this paper, we proposc how to evaluate
the appropriate variance for the Patricia trie, which was an open problem up to
now. We argue that the variance of the external path leng:h is responsible for a
good balance propeity of the Patricia tries. In addition, we note that the external
path length analysis finds direct important applications in such algorithms as
modified lexicographical sorting [14], conflict resolution algorithms for broadcast
communications [10], etc.

This paper is organized as follows. In the next section, we define our model,
establish general methodology to attack the problem and present our main results.
In particular, we show that the variance of the extarnal path fength for the binary
symmetric Patricia trie is 0.37...-n+nP(log,n) where n is the number of records
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end P{x) is a periodic function with small amplitude. This implies that the external
path length converges in probability and with probability 1 to n-log,n. Finally,
Section 3 contains the proof of our main result.

2. Statement of the problem and main results

Let T, be a family of Patricia tries built from n records with keys from random
bit streams. A key censists of Os and 1s (binary case), and we assume that the
probability of appearance of 0 and 1 in a streas. is equal to p and g=1-p,
respectively. The occurrence of these two elements in a bit stream is independent
of each other. This defines the so-called Bernoulii model.

Let L} denote the external path length (random variable) in T,,, that is, the sum
of the lengths of all peths from the root to all external nodes. We are interested in
the average value and the variance of L). Let the probability gencrating function
of LP be denoted as LF(z), that is, L.7(z) = Ez"". Note that in the Bernoulli model
the n reco ds are split randomly into the left subtree and the right subtree of the
root. If X denotes the number of keys in ihe left subtree, then X is Bernoulli
distributed with parameters n and p. Ther, for X =k, the following holds:

p_(n+L{+L7 ,, fork#0,n

a 2.
"1, for k=0,k=n 2.1)

where Lf, L, _, represent the external path length in the left and right subtrees.
Note, that if either left or right subtree is degenerate (i.e., k=0 or k=n) then in
the Patricia an appropriate internal node is “skipped”. Using (2.1) we immediately
prove, after some elementary algebra:

Lemma 2.1. The probability generating function L;(z) satisfies the following recur-
rence:

L§(z)=L{(z)=1, (2.2a)
n n _ ,

Ly(z)=2z" % (k)p"q" “LE(z)LY_i(2)
k=0

—(z"=-1Ll(z)(p"+q"), n=2. (2.2b)

The appropriate recurrence for the generating function, LI{(z), of the external
path length, L, in a family of regular (radix search) tries is given by (2.2) except
that the last term in (2.2b) is dropped (see [8]). This reflecis the fact that in regular
tries empty subtrees are allowed (one-way branching nodes). In other words, the
equivalent recurrence fo (-.1) in regular tries is simply L =n+ L]+ L}, for all
k=0,1,...,n
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Let now I°=EL, and LF=ELF(LF—1), that is, I] is the average value of tie
external path length in Patricia trie and L}, is the second factorial moment of L; .
Note that IZ=L,(1) and L] =L}(1), where L.(1) and L,(1) denote the first and
the second derivative of Lf(z) at - =1. Simple algebra applied to (2.2) reveals that
P and L7 satisfy the following recurrences:

IP=17=0,
n o fn\ . (2.3)
P=n(1-p"—q")+ ¥ (k)p"q"_k(lf‘*‘lf-k), n=2
k=0
and
L§=L{=0,
Ly =2nl;(1-p"—q")=n(n+1)(1-p"—q")
" n " (n (2.4)
+2 5 (M) ptamhipit o 5 7)o+ 2
k=0 \k k=0 \k
Knowing I7 and Lf, one immediately obtains the variance of Ly, as
var LE=LP+I17 - (IF)2 (2.5)

The recurrence (2.4) is a linear one. Hence, let us define three quantities v}, ul
and w! as

vE=0v7=0,
. (2.6)
vr=n(n+1)(1-p"~-q")+ ¥ ( )p"q"‘k(vf+v§-k), n=2,
K=o \k
ug =ufi =0,
- @7
uf:nl,’,’(l—p"—q")-f— Y (k)pkq"—"(u,':’+uf_k), n=2,
k=0
we=wl=0,
(2.8)
p_ o (MY K n-kpp - (7
wp= Y P I+ T ( )p*q"‘k(Wf+ Whoi), n=2.
k=o \k k=0 \k
Then
LY =2uf -vf+2w?k. (2.9)

We note here that regular tries are analyzed in a similar manner [8]. The average
path length, I, satisfies a recurrence like (2.3), except that the first term, i.e.,
n(1—p" —q"), is replaced simply by n. If one drops the factor (1—p" —q") in (2.4),
(2.6) and (2.7), we obtain equivalent quantities for the regular tries, i.e., LT, o,
u, . The quantity w, for tries satisfies (2.8) with I7, i7_, replaced by I7 and IT_,.

This suggests that there is a close relationship between the appropriate parameters
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of regular tries and Patricia tries. We explore this fact in the derivation of our main
resuit.

In order to find a uniform approach to solve the recurrences (2.3)-(2.2), we rote
that ail of them are of the same type and they differ only by the first term which
we call the additive term. Let, in general, the additive term be denoted by a,, whers
a, is any sequence of numbers. Then, the pattern for recurrences (2.3)-(2.8) is

Xo=X, =0,

(2.10)
n

k) P " KO+ xn_k), n=2

%=%+Z(
k=0
To solve (2.10), we define a sequence d, {binomiai inverse relations [9, 15]) as

A~ 2 k n "‘ k n A

a, = z ("'1) a < a,= Z (—1) ag. (2.11)

Note that the exponential generating functions of @, and a, are related by /i(— z)=
A(z) % Using this, in [11], the following lemma is proved.

Lemma 2.2. (i) The recurrence (2.10) possesses the following solution:

n n\ 4, +ka,—a
x"=k§z(_l)k(k)7k——p—"_'—_é_"2' (2.12)

(ii) The wnve:se relative X, of x, satisfies

A + —-
)?":an n't,ll f'lo’ ns 2. (2.13)
I-p"—q

Finally, to find asymptotic approximation for x,, we apply a general approach
proposed either in [3] (Rice’s method) or in [12] (Mellin like approach, see also
[9]). Namely, we consider an alternating sum of the form Y, (=D*(D) f(k) where
f(k) is any sequence. This sum appears in Lemma 2.2.

Lemma 2.3 (Rice’s method, see [3, 6]). Let C be a curve surrouviding the points
2,3,...,n, and f(z) be an analvtical continuaiion of f(k) inside C. Then

N CA VR U
on—kgz(k)( l)kf(k}-hij‘c{n,z}f(Z)dz (2.14)
with
(-1""'n!

z2{(z-1)-- ~(z-n_)'

[n;z]=
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Proof. The formula is a direct consequence of Cauchy’s residue theorem [5]. For
details, see [3]. O

An alternative approach to estimate the asymptotics for the alternating sum S,
is proposed in [12]. It is proved there that

=3/2+ijc0
S, =—:J. Irz)f(-z)n*dz

-3/2—ic0

1 —3/2+i©
—-—J- B(n+1,2)f(-2) dz, (2.15a)

-2"ﬂ'i -3/2—ic
where n*=I'(n+1)/I'(n+1+2), and

n!
z{(z+1)---(z+n)’

B(n+1,z)=

and I'(z) is the gamma function [1]. Equivalently, if one notices that n*=
n~*[1+2z0(n"")], then (2.15a) can be simplified to

1 —3/2+ic0
S,.=—.j I{z)f(—z)n " dz+e, (2.15b)
2w J_3/2-i0
where
—3/2+ic0
e, =0(n™") 2ZF(z)f(-z)n"* dz,
—~3/2—ic0

that is, e, = o(n). Formulas (2.15) resemble the Mellin like appreach discussed in
[9], and first proposed by De Bruijn.

To apply Lemma 2.3 for asymptotic analysis, we change C to a larger curve
around which the iniegral is small, and take into account residues at poles in the
larger enclosed area. To apply formula (2.15), we find residues right to the line
(-3 —ico, —3+i00). Hence, by the residue theorem and Lemma 2.3

i(—l)"(;:)f(k)= § res{[n; z1f(z)}+0O(n~™)
k=2 k

=-00

=k Y res{I'(z)f(—z)n"*}+e, +O(n~™) (2.16)
for any M >0 and the sums are taken over all singularities, z,, k=0, £1,..., of
the functions under the integrals (2.14) and (2.15) in the appropriate regions,
respectively. By (2.16), the asymptotics of the alternating sum of type (2.12) (Lemma
2.2) is reduced to compute the residues of the functions under the integrals, which
is usually an easy task. In 8] we have mainly used a Mellin-like approach to prove
our results for the regular (radix) tries. Therefore, in this paper, we exclusively
adopt Rice’s approach.

In this paper, we concentrate on the analysis of binary symmetric Patricia tries,
that is, p =g =0.5. Note, however, that using our general approach (i.e., Lemmas
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2.2 and 2.3), we can produce exact solutions to an asymmetric V-ary Patricia tries.
In the following analysis, we shall extensively use the appropriate results obtained
by the authors in [8] for the binary symmetric radix search tries. We summarize
these results in the next therorem.

Theorem 2.4. For binary symmetric radix tries the following holds:
(i) (Knuth [9]). The exact value of the average of the exiernal path length, 17 , is

n n k
l{:kgz(—n"(k) T (2.172)
and the inverse, IT of IT is given by
ar n
1"=:i'—__"’ n=2. (2.17b)

For large n the following also holds:

IT=nlog,n+ n[—z+%+ 8(log2n)] —3iL+8,(logyn) (2.18)

where L=log2 (log means natural logarithm), y=0.577... is the Euler constant,
8(x) and 8,(x) are periodic functions with small amplitude and mean zero.

(i) (Kirschenhofer et al. [8]). For large n the variance, var L, of the external path
length is equal to

var LT = n[A+ P,(log,n)]+O(log’n) (2.19)
where
P PEPIPL IL SL T (2.20)
BTN AN A ’ '
© (- © (—1)*!
— ST = ~ L 2.21
H k(24 -1)’ g k§1 2k-1° (2.21a)
2 «©
. L k (2.21b)

- log*2 k2=:1 sinh(2k=w?*/log 2)

and P,(x) is a continuous periodic function with period 1 and very small amplitude
and mean zero (the contribution from 7 is also very szall).

Using this result, we prove in Section 3 our main result of this paper.

Theorem 2.5. For binary symmetric Patricia tries, the following holds:
(i) The exact solution for the average of the external path length is

P_§ c(m\ k2"
= - =I1T—n+s, 2.22a)
=21 (k)l—Z"" n =1 O (
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and
1-n
4p n2

S =2'""T, n=2. (2.22b)

(ii) The variance var LY of the external path length is

var LF =var LT —n[ A, + P(log,n)]+ O(log?n)

=nA+ n- P(log,n) + O(log’n) (2.23a)
where
A —2—2—'2—( +60)=3.9785 A—l+l—-l——'r==037 (2.23b)
1=57 T 9785, T 37... .

with v and 7 defined in (2.21a,b), and

2 (—1)"*‘2"[ j ]
= - - ~1]=3-log2-2v—u. 2.24
=L@ 2 oBSTerTH (2.24)
Numerical evaluation reveals that var L] =4.37...-n+nP,(log,n) and var LY =

0.37...-n+nP(log,n).
Before we proceed to the proof of the theorem, we first offer some remarks and
extension of the main result.

Remark 2.6 ( Extension to V-ary Patricia tries). Using our general approach (Lemmas
2.2 and 2.3), we are able to present exact solutions to the variance of the external
path length in the V-ary asymmetric case (see [8, 9, 13] for definitions). Unfortu-
nately, the asymptotic analysis cannot be easily extended to the asyminetric case,
since we are not able to find an analytical continuation of the solution of wf (see
[8] for more detailed comments). Nevertheless, the asymptoiics of var LY in the
symmetric V-ary case is easy to obtain from our analysis.

Remark 2.7 (The covariance analysis). The proposition and the results from [6, 13],
where the variance of the depth of a leaf in the Patricia was established, provide
asymptotics for the covariance between two different depths of leaf in the Patricia.
Let D, be a depth of a (randomly selected) leaf and let D! be a path from the
root to the ith external node. Note that the external path length LY is d2Sned in
terms of D}’ as L} =Y | D\". Then

n 2 n 2
varL,’,’=E{[ D‘;"] }—{E Y D‘,,”}
i=1 i=1

s

and this implies

var Ly =nvar D,+2 ¥ cov{D\", D'} (2.25)

i#j
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The variance of the depth var D, for symmetric Patricia was analyzed in [6], and
for asymmetric Patricia in [13]. In particular, it was proved that for the binary

symmetric Patricia var D, =1.000. .. . Using our main result and (2.25) we find
2 Y cov{Dy’, DY} =-0.63...-n. (2.26)
i

This also implies, in the symmetric case, that cov{D!?, DY’} ~ -0.63.../n. Note
that the equivalent quantity for regular tries is approximately equal to +0.84. . ./ n [8].

Remark 2.8 (How well is the Patricia balanced ?). The Patricia is a very well-balanced
tree. The random shape of the Patricia is on average very close to a complete binary
tree which is the ultimately balanced tree. Therefore, any tree with good balance
property should have average depth (external path length) equal to log,n+0O(1)
{(nlog;n +0(n)), and small variance. Proposition 2.5 implies that the average depth
is equal to log,n+0O(1), as needed. In addition, we ncte that by Remark 2.7 any
two depths of leaf, say DY’ and DY, are negatively correlated. This means, that
D!?>ED, and DY’ <ED, tend to occur together and D'’ <ED, and DY'>ED,
also tend to occur together. Thus, for negatively correlated random variables D"
and DY, if one is large, the other is likely to be small. This indicates a good balance
property for the Patricia. Note, that in the regular tries cov{D!’, D’} ~0.84/n>0
and D! and D{” in that case are positively correlated. This means that if D' is
large, the DY) is also likely to be large.

The second reason for the well-balanced feature of the Patricia follows from
Chebyshev’s inequality and Proposition 2.5. It is known that for a random variable
X, Pr{|X —EX|> e} <var X/¢? hence the smaller the variance is, the more balanced
X is. In our case Pr{|Lf —If|>+V/ne}=<0.37/¢’. In addition, it seems to us that the
external path length is a better measure of the balance property of a tree than the
depth of a leaf. To “prove” our claim, consider a three-node Patricia tree. Two
possible shapes may occur as shown in Fig. 1. Both possible trees are ultimately
well balanced, since they represent different complete binary trees. Note, however,
that the variance of the depth of (randomly) chosen leaf is positive while the variance
of the external path length is equal to zero. This heuristic can be extended to more
then three-node trees and this suggests that the variance of the external path length
can be treated as a measure of how well a tree is balanced.

Fig. 1.
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Remark 2.9 (The path length L) converges almost surely to ELFY). Applying our
theorem and propousition it is not difficult to prove that LY /EL?” (as well as LT/ELT)
tends to 1 almost surely (i.e., with probability 1) as n - co. Indeed, by Chebyshev’s
inequality one obtains

- 8} var L,

L,
p— s_ .
P’{ EL, | S(EL,)

But, by (2.22a) and (2.23a)
L,
Pr{ EL f -1 '

Therefore, (2.27) implies that L;/EL} -1 in probatility as n -0 [16). To prove a
stronger result, namel'y, that L”/ELY > 1 with probability 1 (i.e., almost surely), we
apply (2.27) and the Borel-Cantelli 'enima [16]. Note that (2.27) implies

28} S‘ELZ—*O- (2.27)
£°nlogyn

® L; 037... 2 1
1l =zes— <00 2.28
nz=:l Pr{ EL; 1| E} e 2Zinlogin (2.28)

.2, by the Borel-Cantelli lemma L, ~ EL} ~ n log,n with probability 1. These resulis
confirm our hypothesis that the Patricia is a very-balanced tree.

3. The analysis

'n this section, we prove Theorem 2.5 for symmetric binary Patricia tries (i.e.,
p =g =1.5). To simplify the derivations, we shall use extensively our previous results
from the binary symmetric regular tries (see Theorem 2.4), that is, we represent all
quantities for the Patricia in terms of equivalent quantities for the regular tries.

Let us start with the average of the external path length, I}, which is given by
(2.3). This equation falls into ouar general recurrence (2.10) with the additive term
a,=n(1-2'"") (symmetric case). Hence, by (2.12) we need da, which is d,=
8n1+n2'"", where 8,, is the Kronecker delta (see [15]). Then, by Lemma 2.2

p_ o o fn) _k2'7* ap k27
In-kgz( 1) (k)__—l—z“" and l"_—l—z“"' (3.1a,b)

Comparing (3.1) with (2.17) one immediately sees that
I7=1T—n+8,, IT=2"""[T p=2 (3.2a,b)
which proves part (i) of Theorem 2.5.
The variance, var LY, of the external path length is given by
var Ly = LT +15 - (1%)?
where L is shown in (2.4). Hence, using (3.2) and (2.18) one proves
var Ly = LF+ 17— (1T = n+2nl7 — n?
2n’log n+2n2~/

=LP+1T -T2+
L L

—n(1+ L")+ P(log,n) (3.3)
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where L=log2. We shall show that Ly =L +g(n) for some g(n), hence we
represent the variance of the Patricia in terms of the variance of the regular tries
var LT=LT+1T-(IN)2

We focus now on the computation of L, givenby (2.4), thatis, LY =2u” — p? + 2w’
(see (2.9)) where the appropriate components, u), vZ and w’ are obtained in
recurrences (2.6)-(2.8). Let us first consider v., that is,

ve =vl =0,
. " ln (3.4)
vp=n(n+1)(1-2'""")+2'""" ¥ (k) v, n=2.
k=0

The equivalent quantity, v, for regular tries satisfies (3.4) with the adaptive term
replaced by a, =n(n+1). We can write

Up =0 —Z,, (3.5a)
where

z,=n(n+1)2'""+2""" ¥ (Z)zk, n=2 (3.5b)

k=0

and z,=z,=0. Note that (3.5b) falls into our general recurrence (2.10) with a, =
n(n+1)2'"", hence d, =4(5)2""—4n2"" [15], and by Lemma 2.2

k\z—" —ak27 % +2k

— o

k=

1- 21—k (3'6)
We need asymptotics for (3.6), and Lemma 2.3 can be applied. Before we deal with
(3.6) we first present one more general result from [11]. Let for some real ¢ and
integer r

k

,,.._",_kn\-k)c ,
ln.r(C)—kéz( 1) (k)(r P (3.7)

Then in [11], using Lemma 2.3, we have proved after some simple algebra, the
following asymptotic approximation for T, ,(c).

Lemma 3.1. For any r, ¢ and large n, the following holds:

O0n0 1
nc{log,_nc+1— '°+—+(—-1)’P,(log2nc)}+O(1), r=0,1,

L L 2
T, (c)= . (38)
~1)'ne| ———+ - =2
(-1) nc[r(r—l)L P,(logzm)]+0(l), r
where P,(x) is given by
1 e e
P,(x)=-I-: Y I'(r+2wik/ L) exp[—2wik log,x] (3.9)
k=-—o00

k+0
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and I(z) is the gamma function [S]. The function P,(x) is periodic with very small
amplitude and can be safely ignored in most practical cases.

Using Lemma 3.1 we immediately obtain
z,,=n(—i—+2)+n8,(log2n)+0(l) (3.10)

where §,(x) is a linear combination of P,(x) and P,(x-). Therefore, we finally find
vl =0l —n(L™'+2)—né,(log,n)+0O(1). (3.11)

Now we turn to a relationship between u? and u!l, where ud =ul =ul =ul =0
and

uf =nlf(1-2'"""+2'" ¥ (n} L, n=2, (3.12a)
k=0 \k/
uy=alj+2'" ¥ (") ug, n=" (3.12b)
k=0 k
Therefore, the following holds:
uf=u:—xn_yn . (3-13)
where
x,=nlf2'""+2'"" ¥ (n)xk, (3.14a)
k=0 k
201 _~Al-n 1-n ”\’
Ya=n(1-2"")+2 2 Vi (3.14b)
k=0 k/

with zerv initial conditions. The recurrence (3.14b) on y, is easy to analyze noting
that it falls into (2.10) with a, =2(3)+n—22""(5)—n2'"" and hence &, =28,,— 8,, -
(3)2° "+ n2'"". We have used here the result from Knuth [9] which says

n A n r n—r
a,,=(r)c" =S a,,=(r)(—c) (1-¢)"". (3.15)
Applying Lemmas 2.2 and 3.1, we immediately obtain

, 1 1
y" =2n"—2n + nl.legzn +f'y—_“‘_+ az(iogzn)] +O(i). (3-16)
4 L 2 L

The analysis of x, is more diffi~ult. We need the inverse relation to a- = nlT2'".

Let a; = nl;. We use the foilo .ng identities proved in [8, 13]:

ar=nil-nil_,, n=3, a4f=2""y% (Z)a,f. (3.17a,b)
k=0

For, by (2.17b) we estimate dg =d] =0, 4] =8 and [8]

AT R n—1
an'—l_zl—n 1_2(271-2_1) ) n?3’ (3'18)
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hence, by (3.17b)

&,’,’==8.2‘—"(;’>+2"" Y (Z)a,{ (3.19)

and by Lemma 2.2

e o M)k 2
wes 20 (1)) 5
. Y LAY
+1 (1) = p ( a7 (3.20)

The asymptotics for the first term of (3.20), say x,;, readily follow from Lemma
3.1, and

4
Xn,1 =In+ 4nd;(log,n)+O(1). (3.21)

We need asymptotics for the second term of (3.20), say x,, and we apply Rice’s
method from Lemma 2.3 (see (2.14)). Note first, that after some simple algebraic
manipulations x,,, can be represented as

= o _nefmy_1 w(k) 1 [ J __]
X2 =(n41) 3 (=1) (k)z"~1,-§‘zj 1 2 L (3.22)

The appropriate analytical continuation of the function in (3.22) is

1 Xz 1 J 3
f(z)—Zz—l,-:z(j)l—Z—j[Z(Zj_'—l) 1] (3.23)

sirice the series in (3.23) is convergent. To apply Rice’s method and (2.16), we need
residues of f(z) and [n;z] (see (2.14)) at the poles of f(z) (roots of 2° —1=0), that
is,

2mik
Xe= o —1="—. (3.24)
L
The main contribution to the asymptotics comes from x,=0. Using the following

Taylor expansions:

[n;2]=-z""+0(1), 2°—1)f(z) = 26 + O(z*) (3.25a,b)

where
G Vi j _} ne
=L@ [2(2’_‘—1) 1 (3.26)

one immediately proves

6
Xz = —%+ nda(logan) +0(1) (3.27a)
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where
¥ [s o] 1 .
84(x)=-£k§wr(—xk)exp[21nkx] Y ( )l e [2(2,._],_1)—1]. (3.27b)
x#0

So, finally by (3.21), (3.22) and (3.27), we prove
X, = n4—zo-+ n[48;(log,n) + 8,(logan)j+O(1)

and by (3.13), (3.16) and the above

3+y—-6 5
L 2

uP=ul-2n’-n logzn—n( ) —no(logyn)+0(1)
where o(x) is a linear combination of 8,(x), 8;(x) and 8,(x). Finally, the formula
on @ can be simplified a little. Noting that

2 2 2

- - = —— +—
@-n@'-1y 2¥-1 27'-v’

one obtains

S o Vi o V= o VA o Vil
6= + -

=2 -1 1212"1 ,-Z__:z J 1221(2’—1)
=1-2v—(log2—-1)=(u—1)=3—-log2-2v—p (3.28)

where v and u are defined in (2.21a).

The most intricate analysis is required for w, which is given by the following
recurrence

wh=2"" P o(k)l”:” k.-“"kzo( )w,‘:’, n=2. (3.29)

We appeal again to our analysis of regular tries. The appropriate recurrence for w!
replaces I{ and IF_, with I and IT_.. The inverse relation to the additive term 2P
in (3.29) can be computed as (we use here (2.22b))

ar=2"2m"y (Z) ITir_, =2>"ar, (3.30a)

k=0

In [8] we have proved that for regular tries
_nn=1) [,,3 °°(n 2)1 1
a —_ 7 + . - =3
2 2n 2 l Z 21_1 2n—2_1 3 n=3

hence, after some algebra

wh=2wl-2 % (—1)"(:)&[. (3.31)

k=3
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We need to estimate the second term in (3.31), which we denote as B,. After some
algebra, we prove

n n k
B"+,=(n+1)k§2<—1)"(k)2—k_.—_—,
1 = (k=1\ 1
1-2%2+ - ( ) ]
x[ = B\ )7 (3:32)

Therefore, Rice’s method (Lemma 2.3) can be applied with the analytical continu-
ation function f(z) as below

1 = (z-1\ 1
1-27"24 - . . .
71 1[ 271 ,Ez( j )2}—1] 3:33)

The poles of f(z) are at

f(z)=

2wik
wk—1+xk-1+"'T, k=0,+1,....

As before, the main contribution comes from w,= 1. We use the following Taylor’s
expansions with u=2z-1 [6]:

[n;z]=§(l+A,u+A2u2)+O(u2),
1t _ 1 1.5
(2°'=1)° L%? Lu 12

111
=——240
71 Lu 270w

> fz—-1y 1
——= - u+0(u’
jgl( J )2'—1 e u+O(ur)

+0(u),

where
M=H,,—1, A=1-H, +3H%_,+3H'?,

and u is defined in (2.21a), while H,, H” are harmonic numbers of the first and
second order [9]. Multiplying [n; z] and f(z), and identifying the coefficient at u™
(residue value), one proves, after tedious algebra,

2

n 1 L n? n
B,= 2Lzlogn+L2('y—-2—)nzlogn+PB, 2Lzlogn
n 3 L nfy 1 L L)
- == - +o—=+ Bty —=
LZ(”+2 2)l°g" Lz(z 2T aTRitYT3
+0(log’n} (3.34)

where

By =3y’ +im’ —3Ly—puL—3iL%
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From [8] we know that the appropriate asymptotics for wrlis

n? n? 3L n’ n
w[=5§ log’n +3 (7 =5 )lognt 5B~ log’n
n 3L 3 n 3y 1
I (7_—_2_+5) log n+23 (L— > —E—Bz'i- Lv)
+O(log?n) (3.35)

where
Bo=3L 3Ly~ Lu+iy*+im.
Hence, by (3.31) and the above, we finally obtain

r K n’
W,':= W,T'i'(w;’;_Bn) =W, "_IOg n+f2-(32~ﬁl)

L
n 1 v vy
— —_—_—t = +( . ‘;6
+Llogn+n(4L It 2)-v-0(log2n) (3.36)

Now we are ready to put all the results together and prove our theorem. Note
that LT =2ul—vT+2w], so

2’

L

9 2v 20

— o == 2
log n n(2L 3 7 L)+0(log n) (3.37)

[r=iT-
and by (3.3)

var Ly =var L} - n[A,+ P(log n)]+ O(log’n)

with A, given by (2.23b). Finally using (3.28) we obtain the constant A in (2.23b),
which completes the proof of our theorem.

4. Conclusions

In this paper we investigated asymptotics of the external path length in the Patricia
tree. In particular, we concentrated on the variance of the external path length, and
proved that the variance is asymptotically equal to 0.37.. .- n+ P(log n). This result
was used to prove that the external path length L, is almost surely (with probability
1) equal to ELL ~niog,n, hence we concluded that the Patricia is a very well-
balanced tree, and in most practical situations it does not need to be additionally
rebalanced.

Finally, the reader may wonder why we have used :he results from regular tries
to prove the appropriate resuit for the Patricia. Is it not simpler to focus only on
Patricia, and, since we have our general lemmas (Lemmas 2.1, 2.2, 2.3), to derive
dirsctly the variance for the Patricia? It is, of course, possible. However, we had to
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cope with the following problem. When deriving the resuits directly for the Patricia,
we would obtain

var L} = Bn*+ An+O(log’n)

where A is the coefficient obtained in Proposition 2.5, while B is a ductuating
function. We have used ir [8], the Dedekind n-function to prove that B=0 (see
also [7]). To avoid this problem in the above derivation, we have chosen another,
simpler approach in this paper.
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