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Abstract . Using several transformation formulae from Ramanujan's
second Notebook we achieve distribution results on random variables related
to dynamic data structures (so-called "tries") . This continues research of
Knuth, Flajolet and others via an approach that is completely new in this
subject .

§1 . Introduction . Our aim in this paper is to demonstrate the extensive
applicability of several series relations occurring in Ramanujan's Notebook
[13] in the analysis of special data structures and algorithms .

The identities we refer to are the following . Let a and 8 be positive
numbers with af3 = 172 .

IDENTITY 1 . [Ramanujan's Formula for ~(2N+ 1)] . Let N be a positive
integer. Then
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where B„ indicates the n-th Bernoulli number defined by
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IDENTITY 4. Let N :-:- 2 be an integer. Then
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It should be noticed that these 4 identities cover transformation formulae for
the series
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for all odd integers m.
These (and several additional formulae) can be found in the excellent

survey by Berndt [2] which also offers historical remarks on the proofs .
In the following sections we are concerned with random variables X N

describing certain parameters of a data structure called tries (defined in Section
2) which are of importance in Theoretical Computer Science .

For the reader's convenience it seems to be appropriate to outline the
mathematical methods before going into technical details . In the first step
recurrence relations for the probability generating functions of the random
variables in question are established . These recursions lead to explicit
expressions for the expectations

N
k_~2 k

where f is a complicated function which can be continued analytically . In
order to get asymptotic information it is convenient to apply the following
lemma from the calculus of finite differences (compare [12]) .

EXN = 1) kf(k),

LEMMA 1 . Let C be a curve surrounding the points 2, . . ., N and let f(z)
be analytic within C. Then

k>2
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k

(-1)kf(k)
2 - ri f [N ; z]f(z)dz

with
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In our applications f is a special meromorphic function and the asymptotic
expansion of EXN is obtained via

EXN - Y_ Res ([N ; z]f(z)),

where the sum is taken over all poles different from 2, . . . , N. The results are
of the type

EXN - AN+ NS(log 2 N),

where S(x) is a continuous periodic function with period 1, very small ampli-
tude, mean 0 and known Fourier expansion .



In order to investigate the variance (which turns out to be much more
delicate) one starts with the formula

Var XN = EXN (XN -1)+EXN -(EXN ) 2 .

The first term can be treated in a similar fashion as the expectation (although
with more tedious computations) and yields for the leading terms

EXN (XN -1) - BN2+ N25 1 (log2 N).

Thus

Var XN - (B-A 2)N 2 +N 2(8,(log2 N)-2A8(log2 N)-8 2 (log2 N)) .

Using Ramanujan's formulae it can be shown that in the two following
problems (Sections 3 and 4), surprisingly enough, the non-fluctuating part of
the N 2-term, namely

B-A2 -zeroeth Fourier coefficient of 8 2 (x),

vanishes . Consequently (since the involved periodic functions are continuous
and the variance is non.-negative) even the fluctuating part of the N2-term
vanishes ; as a byproduct this yields identities for the Fourier coefficients of
82(x), e.g ., for k O0,

Y r(1-XI)r(1- x.)= -2r(1-Xk)
1+m=k
I,m#0

+(log 2)F(2 - Xk) j 2 1 (X_2
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where X" = 2n7ri/log 2 .
As a final result the variances are established to be of order N.
It should be emphasized that periodic fluctuations occur frequently in

distribution results in Number Theory, Combinatorics and Computer Science .
Henceforth we believe that the techniques of this paper might be useful in the
computation of higher centralized moments in other problems (compare
Section 5 for more specific remarks) .

Notational remarks . ( 1) [z" ]f(z) denotes the n-th coefficient in the
Laurent series .

(2) We use the following abbreviations

2
L=log2,

	

Xk=
LL

§2. Tries . In this section we give a short description of the data structure
in consideration as well as the parameters in which we are interested .

An important class of algorithms is concerned with storing and searching
for data in well designed data structures .

One of the most prominent examples are the so-called (binary) tries (from
information retrieval) . N data are stored in external nodes of a binary tree .



It is assumed that each item has a "key" being an infinite sequence of 0 and
1 (where all such sequences are regarded equally likely) . In the tree each left
(resp. right) branch is labelled with 0 (resp . 1). This yields an encoding of
each external node by means of the (finite) sequence of labels describing the
path from the root to this node. Each item is stored in that external node
corresponding to the shortest unique prefix of its key .

Example. We consider 5 data A,_ , E with keys starting as follows (the
shortest prefixes are indicated) :

The corresponding trie is now :

Observe that some external nodes in a trie may be empty so that there is no
general dependency between N (number of items) and the number of internal
nodes . For this reason it is of great importance for the analysis of this data
structure to gain results about the distribution of the random variable

XN = number of internal nodes of a trie built from N data,

where all key sequences are regarded equally likely .

The expectation of XN has been analysed by Knuth in his famous book
[11] . However, the variance was not considered up to now ; it is investigated
in Section 3 .

Another random variable which is of interest in Computer Science is the
number of internal nodes with two non-empty external nodes as immediate
successors ("external internal nodes") . Here we study a slightly more general
parameter. Let s > 2 be an integer . Then we consider the random variable

YN~ = number of minimal subtrees containing exactly s
non-empty external nodes .

The parameter from above is the instance s = 2. In our example these variables

A : 0 1 0 1 1 .

B : 1.1010 .

C : 11100 .

D : 00101 .

E : 00000 .



take the values y52) = 2, y5(3) = 1, Y54' = 0, y515) = 1 . Distribution results on
these variables are obtained in Section 4 .

The results of Sections 3 and 4 may be seen as a continuation of the work
of Flajolet and Sedgewick on the analysis of trie algorithms [7] .

§3 . Internal nodes in tries . Let FN (z) be the probability generating func- `
tion for the random variable XN described in Section 2 . Then the following
recursion holds :
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F,(z) = F1 (z) = 1 .

(3 .1)

This follows from the observation that the probability for a trie of N data toi
r

have k data in the left subtree is 2 -N ( k.) and that, for N :-:, 2, X,,. = 1 (for the
root) plus the number of internal nodes in the two subtrees .

According to the introduction we need precise asymptotics for the expecta
tion IN = FN(1) From (3 .1) we have

IN=1+21-N
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so that the exponential generating function
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In order to simplify we consider
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and get

with

IN

	

,I [N ; z]f(z)dz,

C

[N, z]-

	

(_,)N - ' N!
z(z-1) . . . (z-N)'

where C surrounds the points 2, . . . , N. If we change C to a rectangle with
the corners -M ± iY, X t iY, Y 54 2k7r/L for all k E Z, and let X, Y tend to
infinity we get the following expression for IN (for the estimate of the remainder
term compare [7] . and [14]) .

IN= E Res ([N ; z]f(z))+O(N-A4),

	

any

	

M>0,

where the sum is taken over all poles different from 2, . . . , N, i.e., z = 1 +Xk,
k e 7L and z = 0. The residues are computed by standard techniques ; we find

Res ([N ; z]f(z) ; z = 1) = N

Res ([N ; z]f(z) ; z = 1 +Xk) =
N
NX k XkF( - 1 - Xk)

xfl_(1 Xk)Xk+O(
N1 2)1,
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Res ([N ; z]f(z) ; z=0)=-

Thus we have rederived

THEOREM 2 . The expected number of internal nodes in a trie built from N
data is for N --> ao

1N =
N (1+T,(1og 2 N))-1-ZL T2(log2 N)+O (N),

where
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Here T, and T2 are continuous periodic functions with period I and mean
0 and very small amplitude (observe that

IT
y sinh iry'

[1 ; (6.1 .29)]) .



We remark that Knuth [11] has proved this result (with a less accurate
P

expansion) by means of the Mellin transform technique . Although this might'
be feasible in the following investigations too, we prefer the approach from
above (sometimes called Rice's method) since it makes the computations a
lot easier .

For later use we notice

IN= L2 (1+2T1± 7-2) -2L
(
1+T1+ 2L T,+ 2L T1 7 2 +0(1),

where the argument 1092 N is omitted in the periodic functions .
The variance will be computed via

VarXN =t1%N+IN - l ,

	

(3 .10)

with
" 7N= EXN (XN - 1) = F" (1) .

	

(3 .11)

From the recursion (3.1) we get, for all N > 0,
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In order to obtain an explicit expression
we square equation (3 .5) and get after
manipulations
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From (3.12) we have

W(z) =2L(Zz)+4L(2z)+2W('-2z) .

1-2µN( 1-N ) = 2 1-N IN+ 22-N1N

2and
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for the coefficients IN of L(z)
some straightforward algebraic
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Since 'Z'2= 4 we get for N > 2
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Following our general approach we have to determine the residues of
f(z)[N ; z] at the poles z = 1 +Xk, Z = Xk and z = -1 . (Observe that all poles
are actually simple.) After some tedious but straightforward computations yde
find the residues .
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Now we have derived all necessary asymptotic expansions to treat Var X N
according to equation (3 .10) . Besides of periodic fluctuations with mean zero
the coefficient of N2 in Var XN is
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where the last sum is the zeroeth Fourier coefficient of the periodic function
(7,(x)) 2 , with 7,(x) from Theorem 2 . We start with the treatment of this sum
which is the most difficult part of this section and will make use of Ramanujan's
identities from Section 1 .

PROPOSITION 3 .
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For j = 0 we use Identity 2.
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with the abbreviation B„ = B„/ n! .
We treat the first sum in (3.23) . It is
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Observe that the sums are now convergent .
From [8; (54 .1 .4)]
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where (x)„ = x(x -1) . . . (x - n + 1) . It remains to treat Y_ Aj .
By [8 ; (50.5.10) and (50.5 .16)] we have
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Now we turn to the second sum in (3 .23) . It is
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From [8 ; (54.3 .4)] we know
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Now we treat Y_ C; . By [8 ; (50.5.10) and (50.5 .16)]
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So we have obtained for (3 .26)
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Altogether (3 .23) (and thus (3 .22)) becomes

-1+L+3L 2 -2L E

	

( )
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(-) ,
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and by a short rearrangement of the sums we finally get the proposed formula .

LEMMA 4. VarXN = O(N) .

Proof Inserting the result of Proposition 3 for the zeroeth Fourier
coefficient of r 1 into (3.21) we find that the non-fluctuating part of the N 2 -term,
in VarXN vanishes . Thus

VarXN = N 2 T3(log 2-r3O(N),

where T3(x) is continuous since its Fourier series is absolutely convergent,
which can be seen by obvious estimates using (3 .8), and has mean 0 . If T3 (x)
-would not vanish identically we could find an E > 0 and an interval, say'
[a, b] c [0, 1], such that T3 (x) < -E for x c [a, b] . Since log e N is dense modulo
1, the variance of XN would be negative for an infinity of values N, an obvious
contradiction. This finishes the proof of Lemma 4 .

B2
r
j+2-2k



As a byproduct of the last proof we have shown that T 3 (x) _- 0, so that all
Fourier coefficients of T3 must vanish. Collecting the contributions to T3 from
wr,, (via (3 .14) and (3 .17)) and I N (compare (3 .9)) we get the following

COROLLARY 5 . For all integers k 0 0

Y_ X117( -1 - XI)X .. ( - 1 - Xm)
I+m=k
I,m#0
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Xk= 2LI ( Xk) {2+

	

( .+2)(2j+I _ 1) Xk (

	

) -( )

- 2Xkr( - l Xk) .

For the non-fluctuating part of the N-term of Var XN we gain by a careful
collection of all contributions in (3 .10)

2

	

)'

	

2

	

)'

-3 L3-2(.1+

	

(-1 )'

1)(J - 1)(23- 1) Li_1

	

(-1 )'
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1
+2-L+L~,o

2,+i -1 +L2 [T1T2]o,

where[ T1T2] 0 indicates the zeroeth Fourier coefficient of T 1 (x)T2(x) . With the
same abbreviation we find from Proposition 3 that the first 3 terms may be
rewritten as

_ 2] 0 .L2 L 2 [T1

[T1T2]o could be analysed analogously to our treatment of [T2]0 from before .
However even weak estimates show that this time the coefficient in question
does not vanish. For numerical purposes it is even more convenient in this
instance not to rewrite terms like [T ;]o and [T1 T2 ]0 , because they are extremely
small .

Thus we have proved

THEOREM 6 . The variance Var XN of the number of internal nodes in a trie
built from N data is, for N -* oo,

N I 1

	

(-1

	

1

	

2
Var XN =

L 2-L+2 ,0 2,+1 -1 L [T1]0

+ I Pr1T2] 0 +T4(log 2 N)) + O(1) - 0.8461 . . . N,

where L =I og 2, T 1 , T 2 and r4 are continuous periodic functions with period 1,
mean zero and very small amplitude ; [ ]° means the zeroeth Fourier coefficient .



Remark. z, and 72 are defined in Theorem 2 ; z, follows from our residue
calculation from above to be

T,(x) _ Z dk e 2k-ix ,
k#0

with

dk=-2(1+Xk)r( Xk)12 +
j>0

S+Xk

	

1
-2

F(1 Xk) 4(1+Xk)+j,o(1+2)(2j+~-1)

([xk_l)(xy)
- (Xk- 1 )

1

+3XkI'(-1-Xk)+ 1 Xkr(1 - Xk)+ 1

	

X~r( - 1 - Xi)Xmr(1 - Xm)L

	

L,+m=k
I'm 760

§4. External internal nodes and generalizations . Let FN (z) be the probabil-
ity generating function for the random variable Y(N) described in Section 2 .
Then

From this we get
IN+s-2

	

-
(N+s-2) S -2

with

FN (z) = E 2 -N ( N) Fk(Z)FN-k(z)

	

for

	

N :-:- s + 1 ;
k>0

	

k

F0(z) = F,(z) _ . . . = F.,- I (z) = 1,

	

F.,(z) = z .

Since the further treatment is similar to Section 3 we may confine ourselves
to a shorter presentation . (We keep all notations for generating functions and
coefficients as in Section 3.)

For the expectations IN = FN (1) we have

IN =21-N z ( N) Ik
k'0 k

0 -1,= . . .=1.5 - 1 -0,

An application of Lemma 1 yields

THEOREM 7 . The expectation IN = EYN ) of the number of minimal subtrees
containing exactly s(>2) non-empty external nodes in a trie built from N data is

IN = N 1
	2"

((s -2)!+r5(log2 N)-2N 7_60 092 N)) +O (N)

1 +'	)

Xk (Xk1 1 - 1k) 1(j+2)(2j
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(4.4)J (Z) _ - 1 - 23-s'



where

and

Remark that the instance s = 2 covers the number of external internal nodes.

For the computation of Var Y,;r ) we need
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1=

L
(1 22 ) (( s - 2) !2+2(s-2),TS+T2)

N (1
_21-s)2 ((s-2)!T6+T5T6)+O(1) .

	

(4.5)L2

	

S !2

Again we have
Vary(N) = WN + 1N -1 N ,

and WN = F" (1) fulfills (N :-:- 0)

WN =2'-N

	

(N)
k

Wk+2'-N
k 0

(N lk lN _ k .
k)

	

(4.6)
k_O

We derive the solution

(N+s-1) S_ 1

with

T5(x)= Y- h(S - 1_Xk)e 2knix
k*0

T6(x) = Y, Xk(1+Xk)F(s -1- Xk)e
2k-,.ix

k#0

r(Z)=
	(z)s+122-s-=

	

z

(1-2

	

-s-1

	

1

	

+2 Z

	

(4.8)
2-s-=)(1 -2 3-5-= {

2

,~o (

	

j

	

) 2 s-1+j - 1)

Calculating the residues and applying Lemma I we obtain besides of periodic
fluctuations with mean zero for the coefficient of N2 in Var YN'

1 (1-2 )

	

2-2s

	

1]-S 2

2

	

{
(2s-3)!2

~o

	

j

	

2s-'+'-1+(2s-3)!22-2t
L

	

S !

	

J

-i((s-2)!)2_L ] oy lF(S-1+X,)I2 .

	

( 4.9)

A further application of Ramanujan's identities from Section I .allows to derive
the following

PROPOSITION 8 . For s :-:- 2 we have

C~~oII'(s-1+X])IZ=L 2(2s-3)! ~o
2-j2s)

s 1
1
+~- +(2s-3)t2 2-zs1

	

j ;1- 2

1 s 2

s+t

(,- 2 1

s!2 ) k>2 k) ( - i) kf(k)

-{(s- 2)!}2 .



with

Proof. We have

E IF(s - 1 +X,)I2 = 2 I I(s -2 +X,)s-'I 2 Ir(X,)I 2

s z

	

j,
= 2 ,1' H (IX,I2+j2)

	

21-r 2
j=0

	

21 sinh
L

-1

	

C 41T2/'

	

1 2,-1
= L

	

c,(s)

	

2

	

1_ 21
sinh

s-1

	

s-2
Y- c,(s)x` = II (x+ j 2 ) .

	

(4.11)
1=1

	

j=0

Now we consider the last sum in (4.10) .
12t-1

	

12r-1

,>1 sinh (2la) 2 , ;~! , e2,a-1-2,~, e a,«
-1

Using Ramanujan's Identities 3 and 4 from the introduction we have, with
a=7r 2/L and/3=L,

12,-1

	

L2

	

(-1)1-112`-1 B21
2=2(-1),+I(

	

2)
	 +

	

(22r

13j sinh
2lar

	

4~r

	

2'- 1

	

4t

	

2L

L

so that (4.10) can be written as

( s-I
2Lj

	

c,(s)( - 1)
1=1

	

'~' (	
2'-1l

	

s-1
+ Y, c,(s)(-1),+' B2 '(2 2, -1)

	

(4.12)r

and

c1(s)={(s-2)!}2 .

Now we treat the sums in (4.12) . The more complicated sum is the second
one . From (4.11)

s-1

	

s-2
c,(s)(-1),u2,= Z (j-u)(j+u)=(-1)s-'u(u+s-2)2s-3,

,=1

	

j=0

so that

c,(s)(-1)~

	

_

	

u+s-2 _

	

s-u
(2s-3)!(-1)s-'

-[U21-1] C 2s-3

	

-
( 2s 2_j)

-3
[ U21-11

j
s-2 1 S1(j,2t - 1)

j 2 s -- 3 -J

	

j!

12,-I

L

(4.10)



where S,(n, k) denote the Stirling numbers of the first kind,

[x2s-3]( 1 + X)s-2 (log (1 +x)) 2r - '

(2t-1)!

Therefore we have

s-1

	

B2r

	

2r _
C1(s)(-1)r+, 4t (2

	

1)
i=1

_(2s-3)!(-1)s-'W s -3 ](1+x) c-2 y BI(log(1+x))r-'(1-2r) .

	

(4.13)
2

	

r~2 r!

Since

B r ur= u

r>_o r!

	

eu - 1'

the last sum equals

1

	

2
B

'x 2x+X2+ '

and (4.13) turns into

(2s23 )! (-1)s-2[x2s-3](1+xs-2)
x(1+2x)

(2s-3)!

	

s-2

	

s -2

	

-25+2+1= (2s-3)! -25+z=

	

2

	

i

	

(-1)'2

	

2

	

2

	

(4.14)

Thus we have found a short expression for the second sum in (4.12) . The
treatment of the first sum is similar but easier .

G(S)(_1)r+'	 _

	

(-1)

	

(I+s-2)2s-3,
2- 1

	

1 2- 1

and with j = I - s + 1, this is

~^

	

'

j+2s-2

	

1
(2s-3)! LO ( -1 ) (

	

j

	

2s-'+; -1

=(2s-3)! .,0(2
~2s) 25-

'1 j -1

	

(4.15)
~

Inserting (4.14) and (4.15) into (4.12) completes the proof of the proposition .

With the same argument as in Section 3 we have as an immediate
consequence



LEMMA 9 . Var YN'= O(N) .

Again we derive as a byproduct that all Fourier coefficients of the fluctuating
part of the N 2-term in Var YN' must vanish . Collecting the corresponding
contributions from the residues in z = I +X k , ( k ~ 0) of [N ; z]f(z) with f(z)
from (4.8) we obtain the following identities .

COROLLARY 10. For integer k, s with k 54 0 and s > 2 :

L, F(s-1-X,)r(s-1-X,)
I+m=k
1,m#0

=-2(s-2)!F(s-1-xk)+Lr(2s-2-xk)

x 2 ,
(
xk+2 - 2s)

	

1	+2 2-2s ~
>o

	

J

	

2S-'+; - 1

By some tedious but straightforward computations the N-term of Var Y(N)
can be determined .

THEOREM 11 . The variance of the number of minimal subtreees containing
exactly s(,2) non-empty external nodes in a trie built from N data is

(1 ,2'-s)2 s'(s-2)!

	

2-2sVar YN'=N
L(s!) 2 { 1-2'-S -2

	

(2s-3)!s

-2(2s-3)! Y
C
2-2s~ +(2s-2)

C
1-2s11 2

5- ' 1
j-_0

	

; _ 1
J /

	

)
J

-I Pr5 76]0 +N-r7(1092N) + O(1)

where 75 , 76 , T 7 are continuous periodic functions of period 1, mean 0 and very
small amplitude.

Remark. 75 and 7 6 appear in Theorem 7 ; the Fourier coefficients of 7 7 are
rather complicated and therefore omitted for brevity . [7576]0 might be
expressed in terms of sums similar to [75]0i but since the N-term of the variance
does not vanish it is more convenient to stay with the original expression
because it can be safely neglected for numerical purposes .

§5. Concluding remarks . In Proposition 8 and Corollary 10 we derived
convolution formulae for the r-function, namely for the expressions

Y r'(n - X1)r(n - Xm),

	

n E N.

	

(5 .1)
1+m-k
I,mo0

The instance n = 0 occurs also in a problem in trie statistics (compare
but it is significantly easier than the instances n > I treated in this paper .

[10]),



For k = 0 it follows immediately from the functional equation for
Dedekind's r7-function that

1 j-1
,F(X!)12= 677 2 -2L

	

(

	

)

	

12L2

	

(5.2)
1*0

	

jat11(2' - 1)

(compare [9]) .
In a similar way as in Sections 3 and 4 we get as a corollary for k ~ 0 :

F(-xl)F(-xm)=2F(-xk){Y+L Y_
I+m=k

	

j '1
I'm #0

The instance n = -1 of (5 .1) is an immediate consequence of (5.2) and Proposi-
tion 3, resp . (5 .3) and Corollary 5 . Since

XIF(- 1 -X!)Xm1 (-1 - Xm)
I+m=k
I,moto

=Y, (1 +x/)F( - 1 - X!)(1 +Xm)F( - I - xm)

-Y- (1 +XI+Xm)F( - 1 - XI)F( - 1 - Xm)

_ ~ F( -X!)F( Xm) - (1 +Xk) Y- F( - 1 XI)F( - 1 xm),

we have, for k = 0,

~F(-1+ XI )12 =1+67x2 -L-2L

	

-1

	

- °1122L2
1e0

	

j ;- 2 (J+ 1)3(2' -

and, for k 0 0,

F(-1 - XI)F(-1 -Xm)
I+m=k
I,mO0

with

where

=2F(-1-Xk ) 1-Y+ZL-L

	

kl

	

1	 - 4 ( - 1 - Xk )I

	

j>I (1+x
J

	

(J+1)(2'-1)
(5 .5)

Finally we want to mention that periodic fluctuations occur frequently in
distribution results . We give some examples .

(i) Sum-of-digits . A by now classical result of Delange [3] gives the
following expression for the avera ;e of the sum of digits Sq (n) in the q-ary
representation of n

1 Z S,(n
N .,N

2 q -1) log q N+ F(log q N),

F(x) = Y, cke2kalx
keZ

q-1

	

q+1
CO
_

2 lop, q
(log 27r -1) - 4

C Xk/

	

1 +

	

(5.3)
2j-1

(5 .4)
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and (k 0 0)

q-1

	

2k7ri

	

'

	

2k7ri
ck = t 2k7r (1 +log q/

	

log q/

(ii) Register allocation. Flajolet, Raoult and Vuillemin [6] have investi-

gated the average RN of the optimal number of registers needed to evaluate
an arithmetic expression with N binary operators .

RN= logo N+ R(log4 N) + O(N-i+`)

where

P. KIRSCHENHOFER AND H . PRODINGER

with

and (k F& 0)

R(x) _

	

rke2kTtz >
keZ

1 1

	

yr0

	

2 L 2L+log2 (27r),

L (Xk - OF ("2k) ~(Xk)-

Flajolet [4] has also computed the variance ; an evaluation of (R(x))
similar to our treatment was not performed since it was not necessary in order
to show the cancellation of the loge N term .

Similar results concerning the Gray code representation of natural numbers
and an algorithm called "odd-even-merging" were obtained by Flajolet and
Ramshaw [5].

We hope that the methods used in this paper might be a useful attempt in .

order to get precise results on the centralized moments in these and several
other problems .
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