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COMPARISONS IN QUICKSELECT
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Abstract. A (real) constant that appears as the factor of the leading term of the average
number of bit comparisons required by quickselect, and was originally given in terms of
complex numbers, is expressed using real numbers alone. A further representation is
derived which is converging very quickly.

Methods include residue calculus and the Euler-MacLaurin summation formula.

Fill and Nakama in their study [1] worked out the following constant as the factor of the
leading term of the average number of bit comparisons required by quickselect:

c =
28

9
+

17 − 6γ

9 log 2
− 4

log 2

∑
k∈Z\{0}

ζ(1 − χk)Γ(1 − χk)

Γ(4 − χk)(1 − χk)
,

with χk = 2πik
log 2

.

In this short note we want to elaborate on the sum appearing in this constant (which
is real, although it is presented using complex numbers); we rewrite it using the formula
Γ(x + 1) = xΓ(x) and the symmetry χ−k = −χk as

S =
∑
k 6=0

ζ(1 + χk)

(3 + χk)(2 + χk)(1 + χk)2
.

We note here that a similar analysis has been carried out in [2].
Using residue calculus we derive

S =
log 2

2πi

[ ∫
( 1
2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2

ds

2s − 1
−

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2

ds

2s − 1

]

+
17

36
− γ

6
+

1

12
log 2.

(We use the notation
∫

(a)
. . . for

∫ a+i∞
a−i∞ . . . .)
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The first integral vanishes since the line of integration can be shifted to the right, where
the integrand tends to zero; thus we have

S = − log 2

2πi

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2

ds

2s − 1
+

17

36
− γ

6
+

1

12
log 2.

Expanding − 1
2s−1

into a geometric series (note that <s < 0), we obtain

S = log 2
∞∑

`=0

1

2πi

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2
2`s ds +

17

36
− γ

6
+

1

12
log 2.

We now analyse the integral

1

2πi

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2
2`s ds.

First we shift the line of integration to the right and expand the Riemann zeta function
into a series to obtain

1

2πi

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2
2`s ds = −1

6
+

∞∑
n=1

1

n

1

2πi

∫
(1)

1

(3 + s)(2 + s)(1 + s)2

( n

2`

)−s

ds.

The integral occurring inside the sum equals

1

2πi

∫
(1)

x−s

(3 + s)(2 + s)(1 + s)2
ds =

{
0 for x > 1,

−x3

4
+ x2 − 3x

4
− 1

2
x log x for 0 < x ≤ 1.

(The justification is again residue calculus. In our previous paper [2] we discussed several
similar examples in detail.)

For x > 0 we set

Φ(x) = −x3

4
+ x2 − 3x

4
− 1

2
x log x.

Thus we have

1

2πi

∫
(− 1

2
)

ζ(1 + s)

(3 + s)(2 + s)(1 + s)2
2`s ds = −1

6
+

2`∑
n=1

1

n
Φ

( n

2`

)
and consequently

S = log 2
∞∑

`=0

( 2`∑
n=1

1

n
Φ

( n

2`

)
− 1

6

)
+

17

36
− γ

6
+

1

12
log 2.



ON A CONSTANT ARISING IN THE ANALYSIS OF BIT COMPARISONS IN QUICKSELECT 3

The inner sum can now be simplified using the known summation formulæ for power
sums

2`∑
n=1

1

n
Φ

( n

2`

)
− 1

6
= −1

2
+ 3 · 2−`−3 − 1

3
2−2`−3 − 1

2`+1

2`∑
n=1

log
n

2`
,

which simplifies the expression for S to

S = − log 2

2

∞∑
`=0

(
2−`

2`∑
n=1

log
n

2`
+ 1

)
+

17 − 6γ

36
+

7

9
log 2

and furthermore

c = 2
∞∑

`=0

(
1 + 2−`

2`∑
n=1

log
n

2`

)
. (1)

While this representation of the constant c is aesthetically appealing, its convergence
is very poor. However, we are able to rework the formula, so that we can compute some
50 digits without much effort: Applying the Euler-MacLaurin summation formula to the
remaining inner sum yields

2−`

2`∑
n=1

log
n

2`
+ 1 = `2−`−1 log 2 + 2−`−1 log(2π) +

m∑
j=1

B2j

(2j − 1)2j

1

22j`

− (2m)!

2(2m+1)`

∫ ∞

1

P2m+1({2`t})
t2m+1

dt

for any m ∈ N. The remainder term

1

2

(2m)!

2(2m+1)`

∫ ∞

1

P2m+1({2`t})
t2m+1

dt
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can be bounded by 1
2
(2m− 1)!2−(2m+1)`‖P2m+1‖. For computing c we split the summation

at L to obtain

c = 2
L∑

`=0

(
2−`

2`∑
n=1

log
n

2`
+ 1

)

+ 2
∞∑

`=L+1

(
`2−`−1 log 2 + 2−`−1 log(2π) +

m∑
j=1

B2j

(2j − 1)2j

1

22j`

− (2m)!

2(2m+1)`

∫ ∞

1

P2m+1({2`t})
t2m+1

dt

)

= 2
L∑

`=0

(
2−`

2`∑
n=1

log
n

2`
+ 1

)

+ (L + 2)2−L log 2 + 2−L log(2π) +
m∑

j=1

B2j

j(2j − 1)

2−2jL

22j − 1
+ Rm,L,

where

|Rm,L| ≤ (2m − 1)!
2−(2m+1)L

22m+1 − 1
‖P2m+1‖.

Taking m = 7 and L = 13 gives an error less than 10−53. Thus we can give the following
approximation for c

c = 5.27937 82410 80958 37386 56270 37785 81538 08364 11493 49031 . . . .

Remark. In the paper [1], there are a few constants similar to c, which can all be
treated in a similar manner.
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