Peter Kirschenhofer, Helmut Prodinger,
and Robert F. Tichy

FIBONACCI NUMBERS OF GRAPHS III:
PLANTED PLANE TREES

1. INTRODUCTION

In [8], the Fibonacci number f(G) of a (simple) graph G is
introduced as the total number of all Fibonacci subsets 5 of
the vertex V(G) of G, where a Fibonacci subset S is a (pos-
sibly empty) subset of V(@) such that any two vertices of S
are not adjacent. In Graph Theory, a Fibonacci subset is
called an independent or internally stable set of vertices.
In [6], the average Fibonacci number of binary trees of
size 1 has been considered for the first time: The family %
of all binary trees is defined by the following equation
(0 is the symbol for a leaf and O for an internal node),

compare [7]:

=0+ /\ . (1.1)

BB

Denoting by #,(#) the total number of Fibonacci subsets of
all binary trees of size 7n, i.e., with 7 internal nodes, it

has been shown in [6] that

h,(#B) ~ (0.63713...)(0.15268...)7"" n- 32, (1.2)

so that the average value S,(#) of the Fibonacci number of
a binary tree of size n fulfils asymptotically

S, (#) ~ (1.12928...)(1.63742...)". (1.3)

In Section 2 of the present paper we present an explicit
formula for %h,(#) and exact values for the numerical con-
stants in (1.2) and (1.3).

In Section 3 we generalize the foregoing results to ‘the
family 7 of t—-ary trees. Moreover, we determine how the
number %,(7) of all Fibonacci subsets divides up into the
numbers A, ;(J) of Fibonacci subsets of cardinality g. The
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106 P. KIRSCHENHOFER ET AL.

order of exponential growth of S (7) is analyzed asymptoti-
cally for ¢ - ..

In the last section we deal with the family & of all
planted plane trees. As a paradigm, we also investigate the
second-order moments. '

2. BINARY TREES

Let f, = f,(#) resp.g, = g, (%) be defined by

. = 2, card{S:5C V(T); S a Fibonacci subset
Ire%, not containing the root},
g = 2, cardlS:85C V(I); S a Fibonacci subset

Te%, containing the root},

where %, denotes the family of trees of size »n in #. Also

let
(2) = 2, f,2" and g(2) = ) g,3"

nf._>-_1 nzl

be the corresponding generating functions. From (l.1), we
derive the functional equations

=z2(L+ f+ g)°
z2(1 + f')z.

2y 1

g

Substituting u = 2(1 + ), we have

g = u’/z, = u2(1 +- u)zlz,
whence

u=z+zaf=z+u*l + u)? 2.2

or
Uu

¢(u)

z = with o) = (1 - u(l + u)?)"L.

Applying Lagrange's inversion formula (LIF) (see [3]), it
turns out that the coefficients [2”]u(z) of 2% in the (for-
mal) power series u(z) fulfil

1 n _ 2y-n-1
n_+1w](1 w(l + w)°) .

1 in+j 27

3n+1]u(3)

& & ’.

n+ 1.0\ 7 n = J .

B Ty L el LI C R TR RS LU TR




FIBONACCI NUMBERS OF GRAPHS 11I: PLANTED PLANE TREES 107

from which the coefficients of f(z) are immediate. 1In order
to expand u®> = zg, we again apply LIF to get

- == w e o R RS AP —— — e 5
TN Te me e T BT
L - e e

[Zn+1]u2(z) = = -21- l[wﬂ"'ll(l _ w(l i w)Z)—?I-l_
1 (2.4)
__2 "swnty 27 |
n + ljgo( J )(n— 1 —j)'

Combining (2.3) and (2.4), we have

Theorem 1:

e B0 )
9, =55 1:;:(71 ) g 1)
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L j+1(n+j+1)(2j+ 1)/(2;1)
o~ ' g+ 1 n - J nJ°

Observing the formulas in the above theorem, the ques-
tion arises whether there is a combinatorial interpretation

of the summands. This will be settled in a more general

context in the next sectiom.
Let us now turn to the asymptotic evaluation of the
numbers appearing in Theorem 1. The common singularity
0o = p(#) nearest to the origin of the generating functions
f(z), g(a), h(z) =1 + f(2) + g(z) has been determined
numerically in [6], D = 0.15268... [compare (1.1)]. In the
following, we will give the exact value of this constant,
- i.e., the singularity nearest to the origin of the function
TS u(z) from above. | “
, By (2.2), p is a solution 2z of the system

H(z, Uu) = u® (1l + u)> ~u+z3=0
(2.5)

by +6u: +2u-~-1=0
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(Darboux's method; compare [l], [4], and [5]). Solving the
second equation for u by Cardano's formula and inserting
into the first equation, it turns out that

S
TY - 76

1 / -*_,26. (3?
—2—_31+ E'?—‘I"Jl— ﬁ.

Again following Darboux's method cited above, we obtain

1
p = ~y' + 5 Y (2.6)

with

Y

(2" u(z) ~ e+ p "en ¥, no o, (2.7)

with

0 1/2
- =
2m(~1 + 12y°)

f, = & luz) ~ %p"”n'”z- (2.8)

To determine the asymptotic behavior of g,, we observe that

" Hence

u(z) = u(p) - K(p - 2)Y? + oo
thus,

w2 (z) = u?(p) - 2u(P)K(p - )% + ---,
so that 1
g, = [T’ () ~ 2u(P)f, = 2(3 -'E)f;- (2.9)

Putting everything together, we arrive at

Theorem 2: With

1+ 29—+J1-- =

e
]
N
o
~

and

we have

~ (0.41878180...) - (0.15267965...) "n" 2,

(continued)
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1
In (‘@) - Z(y - "f)fn (Q)
~ (0.21834433...)(0.15267965.. ) 32,

2
2y -n_~3/2

h,(®B) ~ 2yf, (%) ~ % [
om(—1 +-12y?)

- (0.63712614...)(0.15267965...)'%“3’2.

In particular,

Tn .1 _ 1917987

gn zy — 1 [ ] .-.,

RPN C T Sy
o card gﬂ: p(-l-+ lzyz) 4p

~ (1.1292766...)(1.6374152...)".

3. t-ARY TREES

As announced in Section 2, we now determine the numbers

fma’ = f'n,j(y)= Y card{s:S5 & V(I); S a
Te 7,
Fibonacci subset of cardinality
j not containing the root},
and
9. ; =gmj(.7)= Y card{S: SC V(T); S5 a

T,

Fibonacci subset of cardinality
j containing the root},

where 7, denotes the family of t-ary trees of size 7. Let

Y f, , anch
" b iy K

F(z, x)

resp.
G(z, ) = 2 9, kz”:ck
ny kK

be the double generating functions. Since

'a
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Fap+ /f\ . (3.1)

g 9...9
i ——

t times

it follows that

F=3z(l+F+G6°
(3.2)
G = xz(1 + F)*.
Substituting xz = wt™t and V = w(l + F), we have
Vt
¢ =
and b
v .,V _ 1 .t t-1yt
F=z(5+—5)—) -mV(l'l'V ) s
so that
V=t wF =w -+ VL + VP
and, finally,
. w = V(l —-;—l:- Vt'l(l + Vt'"l)t). (3.3)
Applying LIF
k
with , 1
Y1 (®) = % y 1y - Y ( g ) (3.4)
Since
LA Y v (x2)wk
1 + F = ) ” k+1
=1+ ) f kxkz“
nek
1\2-k_ (£- 1)n
=1+ 2 fmk(:.?) W ?
N, K
we have
1\7n-Kk
Zkfn,k(:i:') = V(t- Dn+ 1 (&)
" - ,_]-L ______[y('b—l)n]
1 + (¢ - 1)
~-(t~-1)n-1
(1 ~ %yt—l(l + yt-l)t)

-----------
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1 . 1
o it i R TC R

e SC T a2 )

Tnyn-5 = TT’(‘%LT-"TYH((t ] {j')n i j)(ntf. j)' ket

In order to investigate G = V¥/w, we again use LIF to find
that

)-(t— Dn-1

so that

Vvt = 3 D, (x)wk
k

with

~ 2 - 1 “ = -k -
?)k+1(33) =-k_+—l[yk+1 t](l _ E?Jt 1(1+y1‘; l)t) K 1-

By a similar computation,

_ 5 ((t —~ -l)n + g tJ
gn,n-j 1 + (¢ - L)n J )(n -ad - 1)'

(3.6)

Theorem 3: The average values of the numbers of Fibonacci
subsets of cardinality n - j of the trees in J, are given

by
(a) (not containing the root)

(2N /()3

(b) (containing the root)

(7N -5 - /)

(c) (in total)

__J.'__i_l__((t - Dn+ 4+ 1)(tj + 1)/(75?1)
tg + 1 J + 1 n --J nJ°

Observe that for t = 2 these expressions coincide with
the summands in Theorem 1, which means that the desired
combinatorial interpretation may be established in this way.

Summing up over all possible values of j, we obtain the
following corollary.
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Corollary 1: The average Fibonacci number S, (7) of t-ary

trees of size n is given by
n » ] »
_ J + 1 ((t- Dn + g + 1)(153 + 1)/(tn)
Sn(j-) j§0t3+1 j+]_ n - J n/°

e asymptotic behavior of S, (%) for'

Before exploring th
h value of

we want to stress the question for whic

1
0"‘":]1;+1’ 1[

the expression

n—)—m,

| | _an + 1((7:- 1yn+on+ 1)(tan + 1)
Pn, (ha)n(m T toan+ 1 on + 1 n-—on

[compare (c) of Theorem 3] obtains its maximum for 7 * .

By Stirling's approximation, we find
1 T (t-1+a)dt B
hn, (l-a)ﬂg) ~ ITN ' ( ) _) 30;,t’
(t- 1)(1=-a)(@(t+1)-1)
with - )
_ (t - 1+ a) "~ b+opg)™®
Cﬁ.,t - | Cf.(t-l-l)"l.

(t - l)t'la“(l - a)l"“(a(t+ 1)-1)

al growth, we confine our
Let 0 denote the value of
By ordinary calculus,

Since Cqy, + regulates the exponenti

considerations to this quantity.
o for which Cy ; takes its maximum.
we find that o; must fulfil the equation

(0, +t - 1) tteaf s (1 - 0y) -
s — - = 1. (3.8)

(a,(t + 1) = 1)

For example,

o, = 9—1;-6-‘/—5- = 0.7236067. ..,

a, = 0.7074302... .
It is not difficult to see that 0, = %im 0. exists.

Taking the logarithm in (3.8) and expanding for £t > oo,

it turns out that 0., is the (unique) solution of the equa-

tion
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O, — 1

=g O (3.9)

1 - O,

;1 with O < O <1, i.e.,

0. = 0.6924583... . (3.10)

| By a more careful consideration, it turns out that

_ B 1
Oy = @m+“_&'+ﬁ(?), t -+ oo,

In a similar way as in the determination of O, we find that
3 is given by the equation

1 2 1 B 3 1 '
B( + + )-um—2+2u£, (3.11)

1.4

8 = 0.0285962... .

Altogether, we have proved

Theorem b: For "large n" the maximal contribution to the
average Fibonacci number S, (Z) occurs for a cardinality
j =Y.+ n of the Fibonaccl subsets, where

0'0285962"'-F6X1/t2).

| Yy, = 1 - a; = 0.3075416... - e

To speak in a less rigorous way, we may say that Fibo-
nacci subsets which contain approximately 30% of the nodes
of the tree constitute the maximal contribution to the
Fibonacci number.

The last part of this section is devoted to the study
of the asymptotic behavior of 5,(7) for n » ». For this
reason, we introduce the generating functions

' f(z) =F(z, 1) = L 2" L1, ¢>
_ n k : (3.12)

g(z) = G(z, 1)

!
™)
()
@

From (3.2), we find that

f=a(l+f+g? and g=20+HN". .13

Substituting
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u=z0+ N1, (3.14)

it turns out that

1+1/(¢- 1), 5-1/(t-1)

U

and

i
il

z(ull(t- 1) . y1+ 1r/(i- 1))t
31/(1':— 1) 5 1/(2~ 1)

M/ (- 1), t/(E-1)(] + y)t.

Inserting into (3.14) yields, after a few steps,
z = u(l - u(l +u)*)" . (3.15)
In order to apply Darboux's method, we solve the system

H(z, u) = 3 - u(l . u(l + u)’&)‘*"1 =0
(3.16)
0.

l
N
g

-~
o’
i

Let (2;, %,.) be the pair of solutions in question. Then,
after some short manipulations, the second equation (3.16)
may be written as

tu, (1 + tug) (1 + u)t™ = 1. ' (3.17)

From this identity, we gain the asymptotic behavior of u,
for £ > ® as follows: It is easily seen that tu, = f(1). We

put

tu, = 0 + r,. (3.18)
Inserting and expanding, we derive

(1 + u,]t)’:'1 = eS(1 + o(1)), t >
so that &6 > 0 is the (unique) solution of

S(L + 8)ed = 1, i.e., § = 0.4441302... .  (3.19)

Again plugging (3.18) into (3.19), a more detailed expansion
yields
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. “  x2
(1 +u,)* ™t = e‘s(l + r, - -2- - %; + 0(%) + ﬂ(r%))

and therefore

26 + 8> S8(8+ 1) 1

- ———————— + = 1;—)-{:::,
"t T1 ¥ 36 + 82 2 17 ( )
so that
o € al 1
Uy =?+'_E—£+0(“E§') | (3.20)
with

§2(8 + 1)(S + 2)

£ = W = (0.1376138... .

Turning now to 2., (3.15) combined with (3.17) yields

1 + u, t-1
Ui\l = T+ tut))

zt —
- w231 (HH@.)
- . TS L
- tut dt (]‘ + 1 + wt) 3 (3-21)
where
1/t - 1\¢t-1

is the unique singularity nearest to the origin of the gen-
erating function

o I T L2 AP
y(Z) - n\§011+ (t a 1)?’1(?’1 )Z

of the numbers of trees in %,.

By Darboux's theorem, it follows that 5,(Z) behaves
like -

q "
S, (7) ~ At(—éf) , N > oo, (3.23)

where A, is a constant that will not be determined expli-
citly here, for shortness. The ratio q,/z2, [i.e., the order
of growth of 5,(7)] behaves for t + ©, by (3.20) and (3.21),

as
e _ 52/(8+ 1) 1/ O §%
zt—-(6+1)e | 1+?§(6+1+2(6+1)2'

e £
'ﬁf?ﬁ?"@)*‘“)
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Evaluating the appearing constants numerically, we get

Theorem 5: With 4, a constant, we have

S (7) ~ At(1.655487. R N SSSSE 0(—1—-))

for n - «,

L, PLANTED PLANE TREES

The family £ of planted plane trees is defined by the fol-
lowing symbolic equation:

=?=0+T+/\ A /j\ A (4.1)
P P P P P P

Let us denote by [, 5 = [, (L)s Gy, 5 = In,j (#) the num-
bers of Fibonacci subsets of cardinality J of the trees of
size 7 in £ (not containing resp. containing the root) and
by F(z, x) resp. G(z, x) the double generating functions.
From:(4.1), we obtain

¥ & G = B

1-F-¢ i - F-

(4.2).

From this

F(l - F)*
1 + F(x - 1)

Applying LIF as in the previous section, we obtain

Tnyi = %(?)(n E;Vi;i'_—zl)

1 n-—l)(Zn—Z)
In,5 " = I\j - 1/\n -4 -1/°

Theorem 6: The average numbers of Fibonacci subsets of car-
dinality J of planted plane trees of size n are given by:

Z (4.3)

(4.4)

(a) (not containing the root)

()77 200G 22)

-, ._1

......
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(b) (containing the root)

7 n-l)( 2n - 2 )/(27;—2).
n—-WN\j-1\n-7-1 n-117/,’

(c) (in total)

2(5)(7 720/ 20

117

Applying Vandermonde's convolution, we obtain

Corollary 2: The average numbers of Fibonacci subsets of

planted plane trees of size n are given by:

(a) (not containing the root)

P (3n - 2)//(2n - 2)_
ne o \n -1 n -1/
(b) (containing the root)

bn: = - 'f(?en: 23)/(2:»;Z - 12);

(c) (in total)

(22l -5 ()T o

The second—-order moments of all random variables in
question are not much harder to obtain than the expected
values. To give an example, we determine the second-order

moment in the case of planted plane trees.

Let f(T) resp. g(T) denote the number of Fibonacci sub-
sets of the tree I not containing resp. containing the root

and

A(z) = T zn T (F(T) + g(T))?;

n TeP,

B(z)

%zn 2 F2(T);

TeP,

(4.4)

(continued)
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C(z) = 2 3" L F(Mg);
n Te, ~

| (4.4) i

D(z) = L 2" X g*(I). 4

n Te ?n K

So we have g <

A=B+ 20 + D, (4.5)

and, by (4.1),

B=3/(1 "'A):
C =3z/(1 -B-20C), (4.6)
D =2z/(1l - B).

From (4.6), it follows that

e

L« 8= ~7_F 4
z = B(1L - B)(1 - B - 2C),
whence
P
20 =1 - B - B - B)° |
.-'.-i
Inserting this into g
4z = 2C(2(1 - B) - 2C), ' _m
we derive 2
58
4z = (1 - B)? - ———, -
B%(1 - B)? . -
oY v
g = —B— with ¢(B) = (1 - B)"2(-2B + V1 + 4B2)*.
@(B) |
(4.7)
Applying LIF,
[2"]B = -hl-[z”"l](l - 2)"2"(2z + V1 ¥ 4a2)".

Substituting 2 = u/ (1l - uz),-it follows by formal residue
calculation that
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(L+u>)Q+w)*™ 21 -u)?"-?2

(l—u—uz)zn

[27]B = > [u""}] , (4.8)

whence

s el p (il omod )

Rttt Tmin- 1 2n - n-5% -4

n+L+g-1 n+ 44+ -1
G} (-9
Similarly,
[zﬂ] — _l[uﬂ-ll'(]-- 3“) -(1+u)l}n—3(1 _u)ZH"Z . (4-10)
n- (l_u_uz)?}n
[27] = 1)

A+uf)A-2u-2u"- 200 -u) A+ A -w) "2

(4.11)
(and 4 = B + 2C + D!).

To perform the asymptotics of [2"]4, we again use
Darboux's method. Starting from (4.7), the method already
described in the previous sections leads to the numerical

value
qg = 0.08738321...

for the singularity q of B (and also C, D, A) nearest to the
origin. By local expansions of the generating functions
about the singularity g, a tedious computation leads to
(compare [5])

Theorem 7:

(2714 ~ - -A

1.755746... q-n+]J2 "

VT

and the second-order moment of the numﬁer of Fibonacci sub-
sets is asymptotically given by

[2"]4
card &,

~ (1.038020...)(2.860961...)".
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