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Abstract. This paper studies τ -adic expansions of scalars, which are important in

the design of scalar multiplication algorithms for Koblitz Curves, but are also less

understood than their binary counterparts.

At Crypto ’97 Solinas introduced the width-w τ -adic non-adjacent form for use with

Koblitz curves. It is an expansion of integers z =
Pℓ

i=0
ziτ

i, where τ is a quadratic

integer depending on the curve, such that zi 6= 0 implies zw+i−1 = . . . = zi+1 =
0, like the sliding window binary recodings of integers. We show that the digit sets

described by Solinas, formed by elements of minimal norm in their residue classes, are

uniquely determined. However, unlike for binary representations, syntactic constraints

do not necessarily imply minimality of weight.

Digit sets that permit recoding of all inputs are characterized, thus extending the line

of research begun by Muir and Stinson at SAC 2003 to the Koblitz Curve setting.

Two new digit sets are introduced with useful properties; one set makes precomputa-

tions easier, the second set is suitable for low-memory applications, generalising an

approach started by Avanzi, Ciet, and Sica at PKC 2004 and continued by several au-

thors since, including Okeya, Takagi and Vuillaume. Results by Solinas, and by Blake,

Murty, and Xu are generalized.

Termination, optimality, and cryptographic applications are considered. The most im-

portant application is the ability to perform arbitrary windowed scalar multiplication

on Koblitz curves without storing any precomputations first, thus reducing memory

storage to just one point and the scalar itself.

1 Introduction

Elliptic curves (EC), as a cryptographic primitive [13, 11], are now well established

and standardised [22, 23]. The performance of an EC cryptosystem depends on the

efficiency of the fundamental operation, the scalar multiplication, i.e. the compu-

tation of the multiple s · P of a point P by an integer s. Among all EC, Koblitz

curves [12], defined by the equation

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over the finite field F2n , permit particularly efficient implementation of scalar mul-

tiplication. Key to their good performance is the Frobenius endomorphism τ , i.e. the
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map induced on Ea(F2n) by the Frobenius automorphism of the field extension

F2n/F2, that maps field elements to their squares.

Set µ = (−1)1−a. It is known [21, Section 4.1] that τ permutes the points on

Ea(F2n), and (τ2 + 2)P = µτ(P ) for all points P . We identify τ with a root of

τ2 − µτ + 2 = 0 . (2)

If we write an integer z as
∑ℓ

i=0 ziτ
i, where the digits zi belong to a suitably defined

digit set D, then we can compute z · P as
∑ℓ

i=0 ziτ
i(P ) via a Horner scheme. The

resulting method [12, 20, 21] is called a “τ -and-add” method because it replaces the

doubling with a Frobenius operation in the classic double-and-add scalar multipli-

cation algorithm. Since a Frobenius operation is much faster than group doubling,

scalar multiplication on Koblitz curves is a very fast operation.

The elements d · P for all d ∈ D must be computed before the main loop of

the Horner scheme begins. Larger digit sets usually correspond to representations∑ℓ
i=0 ziτ

i with fewer non-zero coefficients, which in turn translates to less group

additions. The recipe for optimal performance is a balance between digit set size and

number of non-zero coefficients.

Solinas [20, 21] considers the residue classes in Z[τ ] modulo τw which are co-

prime to τ , and forms a digit set comprising the zero and an element of minimal norm

from each residue class that is coprime to τ . We prove in Theorem 2 that such ele-

ments are unique, hence Solinas’ digit set is uniquely determined. It has cardinality

1 + 2w−1. Solinas’ recoding enjoys the width-w non-adjacent property

zi 6= 0 implies zw+i−1 = . . . = zi+1 = 0 , (3)

and is called the τ -adic width-w non-adjacent form (or τ -w-NAF for short). Every

integer admits a unique τ -w-NAF.

We call a digit set that allows us to write each integer as a recoding satisfying

property (3) a (width-w) non-adjacent digit set, or w-NADS for short. Our Theo-

rem 1 is a criterion for establishing whether a given digit set is a w-NADS, which

is very different in substance from the criterion of Blake, Murty, and Xu [6]. This

line of research, i.e. the characterisation of digit sets which allow recoding with a

non-adjacency condition, was initiated by Muir and Stinson in [14].

Our criterion is applied to digit sets introduced and analysed in §§ 2.3 and 2.4.

We can prove under which conditions the first set is a w-NADS (Theorem 3), and

give precise estimates of the length of the recoding (Theorem 4). The second digit set

corresponds, in a suitable sense, to “repeated point halvings” (cf. Theorem 5) and is

used to design a width-w scalar multiplication algorithm without precomputations.

Among the other results in Section 2 are the facts that the τ -adic w-NAF as defined

by Solinas is not optimal, and that it is not possible to compute minimal expansions

by a deterministic finite automaton.

In Section 3 we discuss the relevance of our results for cryptographic applica-

tions. We conclude in Section 4. Some of the proofs are contained in Appendices.
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2 Digit Sets

Let µ ∈ {±1}, τ be a root of equation (2) and τ̄ the complex conjugate of τ . Note

that 2/τ = τ̄ = µ− τ = −µ(1+ τ2). We will consider digit expansions to the base

of τ of integers in Z[τ ]. Note that Z[τ ] is the ring of algebraic integers of Q(
√
−7).

It is well known that Z[τ ] is a Euclidean domain and therefore a factorial ring.

Definition 1. LetD be a (finite) subset of Z[τ ] containing 0 and w ≥ 1 be an integer.

A D-expansion of z ∈ Z[τ ] is a sequence ε = (εj)j≥0 ∈ DN0 such that

1. Only a finite number of the digits εj is nonzero.

2. value(ε) :=
∑

j≥0 εjτ
j = z, i.e., ε is indeed an expansion of z.

The Hamming weight of ε is the number of nonzero digits εj . The length of ε is

defined as

length(ε) := 1 + max{j : εj 6= 0} .

A D-expansion of z is called a D-w-Non-Adjacent-Form (D-w-NAF) of z, if

3. Each block (εj+w−1, . . . , εj) of w consecutive digits contains at most one nonzero

digit εk, j ≤ k ≤ j + w − 1.

A {0,±1}-2-NAF is also called a τ -NAF.

The set D is called a w-Non-Adjacent-Digit-Set (w-NADS), if each z ∈ Z[τ ]
has a D-w-NAF.

Typically, we will choose D to be a set of cardinality 1+2w−1, but we do not re-

quire this in the definition. One aim of this paper is to investigate which D are in fact

w-NADS, and we shall usually restrict ourselves to digit sets formed by adjoining

the 0 to a reduced residue system τw, which is defined as usual:

Definition 2. Let w ≥ 1 a natural number. A reduced residue system D′ for the

number ring Z[τ ] modulo τw is a set of representatives for the congruence classes

of Z[τ ] modulo τw that are coprime to τ .

For a digit set D for Z[τ ] formed by 0 together with a reduced residue system,

the following algorithm either recodes an integer z ∈ Z[τ ] to the base of τ , or enters

in a infinite loop for some inputs when D is not a NADS.

Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[τ ], a natural number w ≥ 1 and a reduced residue system D′
for the

number ring R modulo τw
.

OUTPUT: A representation z =
Pℓ−1

j=0
zjτ

j
of length ℓ of the integer z with the property that if

zj 6= 0 then zj+i = 0 for 1 ≤ i < w.

1. j ← 0, u← z

2. while u 6= 0 do

3. if τ | u then

4. zj ← 0 [Output 0]
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5. else

6. Let zj ∈ D
′

s.t. sj ≡ z (mod τw) [Output zj ]

7. u← u− zj , u← u/τ , j ← j + 1

8. ℓ← j

9. return ({zj}
ℓ−1

j=0, ℓ)

Example 1. Just having a valid digit set does not imply that the recoding algorithm

terminates. This has been observed for NAF-like expansions of rational integers to

the base of 2 by Muir and Stinson [14]. If we take w = 1 and the digit set {0, 1− τ}
(here the corresponding reduced residue set modulo τ = τ1 comprises the single

element 1 − τ ) we see that the element 1 has an expansion (1 − τ) + (1 − τ)τ +
(1 − τ)τ2 + (1 − τ)τ3 + · · · . Algorithm 1 does not terminate in this case.

2.1 Algorithmic Characterization

As we already mentioned above, one aim of this paper is to investigate which digit

sets D are in fact w-NADS. For concrete D and w, this question can be decided

algorithmically:

Theorem 1. Let D be a finite subset of Z[τ ] containing 0 and w ≥ 1 be an integer.

Let

M :=

⌊
max{N(d) : d ∈ D}

(2w/2 − 1)
2

⌋
,

where N(z) denotes the norm of z, i.e., N(a + bτ) = (a + bτ)(a + bτ̄) = a2 +
µab + 2b2 for a, b ∈ Z.

Consider the directed graph G = (V,A) defined by its set of vertices

V := {z ∈ Z[τ ] : N(z) ≤ M}

and set of arcs

A :={(y, z) ∈ V 2 : There is a nonzero d ∈ D such that z = τwy + d}
∪ {(y, z) ∈ V 2 : z = τy} .

ThenD is a w-NADS if and only if the following two conditions are both satisfied.

1. The set D contains a reduced residue system modulo τw.

2. In G = (V,A), each vertex z ∈ V is reachable from 0.

If D is a w-NADS and D\{0} is a reduced residue system modulo τw, then each

z ∈ Z[τ ] has a unique D-w-NAF.

This result is proved in Appendix A. We now make a few simple remarks and

discuss two well-known examples.
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Remark 1. A number a + τb ∈ Z[τ ] is relatively prime to τ if and only if a is odd.

This follows from the fact that τ is a prime element in Z[τ ] and that τ divides a

rational integer if and only if this rational integer is even.

Example 2. Let w = 1 andD = {0, 1}. By Remark 1, there is only one residue class

prime to τ . In this case M = 5, so V = {0,±1,±2,±τ,±1 ± τ,±(−µτ + 2)}.

The corresponding directed graph in the case µ = −1 is shown in Figure 2. The

case µ = 1 is similar. We see that all 13 states are reachable from 0. Thus, {0, 1}

0 1

τ

τ + 1

−τ − 2

−τ − 1 −2

−1

2
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1 − τ

τ + 2 τ − 1

0

1

0

1
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0
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Fig. 1. Directed Graph G for µ = −1, w = 1, D = {0, 1}.

is a 1-NADS. This is equivalent to saying that τ is the base of a canonical number

system in Z[τ ] in the sense of [9], and is a particular case of results from [8].

Remark 2. Example 2 immediately shows that there are exactly 2w residue classes

modulo τw; a complete residue system is given by
∑w−1

j=0 εjτ
j with εj ∈ {0, 1} for

0 ≤ j < w. There are 2w−1 residue classes relatively prime to τw, a reduced residue

system is given by 1 +
∑w−1

j=1 εjτ
j with εj ∈ {0, 1} for 1 ≤ j < w.

Example 3. Let w = 2 and D = {0,±1}. Using Remark 2, it is easily seen that

{±1} is a reduced residue system modulo τ2. In this case, M = 1, the graph G
consists of the three states V = {0,±1} only, and those are obviously reachable

from 0. Thus {0,±1} is a 2-NADS. This has been proved by Solinas [20, 21].

Example 4. One might consider the digit setD = {0}∪{±1,±3,. . .,±(2w−1−1)}.

The odd digits form a reduced residue system modulo τw, since τw divides a rational

integer if and only if 2w divides this rational integer (note that τ and τ̄ are coprime

primes in Z[τ ]). However, this digit set is not a w-NADS for all w. For instance, for

w = 6, the number 1−µτ has no D-6-NAF. However, using Theorem 1, it turns out

that for w ∈ {2, 3, 4, 5, 7, 8, 9, 10}, this set D is a w-NADS.

2.2 Representatives of Minimal Norm

Theorem 2. Let τ , w ≥ 2 be as above, and D a digit set consisting of 0 together

with one element of minimal norm from each odd residue class modulo τw.

The digit set D is uniquely determined. In other words, in each odd residue class

modulo τw there exists a unique element of minimal norm.
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Proof. Let α, β be distinct elements of minimal norm in the same odd residue class

modulo τw. Then, β = α + γτw with γ ∈ Z[τ ] \ {0}. By [21, Corollary 59

and Equation 64] we have that N(α), N(β) ≤ 4
7N(τw), hence

√
N(γ)N(τw) =√

N(α − β) ≤
√

N(α) +
√

N(β) ≤ 4√
7

√
N(τw). This implies N(γ) ≤ 16

7 .

Being γ 6= 0, it can only be N(γ) = 1 or 2.

Now we make use of the fact that τ is prime and does not divide α nor τ̄ . Writ-

ing down the relation N(α + γτw) = N(α) explicitly we obtain αγ̄τ̄w + ᾱγτw +
γγ̄τw τ̄w = 0. This implies that τw divides αγ̄τ̄w and thus γ̄. Therefore 2w =
N(τw) divides N(γ̄) = N(γ) which we know to be either 1 or 2, implying in turn

w ≤ 1. This is a contradiction.

In [4] it has been shown that the τ -NAF has minimal weight among all the τ -

adic expansions with digit set {0,±1}. In fact, since the digit set D = {0,±1 ± τ̄}
is also Solinas’ set for w = 3, in the same paper it is shown that a D-w-NAF with

this digit set is actually always an optimal D-expansion. In the binary case (where

τ is replaced by 2), it turns out that the analogous result is true for all positive w [1,

15]. So one might conjecture that the same is also true for our choice of τ . But, the

following example shows that this is in fact not the case:

Example 5. Consider µ = −1, w = 4, and the set D of minimal norm representa-

tives modulo τw. We have D = {0,±1,±1 ± τ,±(3 + τ)} and note that

value(1, 0, 0, 0,−1 − τ, 0, 0, 0, 1 − τ) = −9 = value(−3 − τ, 0, 0,−1) .

The first expansion is theD-w-NAF and has Hamming weight 3, whereas the second

expansion does not satisfy the D-w-NAF-condition, has Hamming weight 2 and is

even shorter.

Even worse, we exhibit chaotic behaviour in the following sense: for every posi-

tive integer k, it is possible to exhibit a pair of numbers which are congruent modulo

τk, but whose optimal D-expansions must differ even at the least significant posi-

tion. Thus it is impossible to compute an optimalD-expansion of z by a deterministic

transducer automaton or an online algorithm.

Proposition 1. Let w = 4, and D = {0,±1,±1 ± τ,±(3 − µτ)} (all signs are

independent) be the set of minimal norm representatives modulo τw. For every non-

negative integer ℓ, we define

zℓ := value
(

0, 0, 0, 0, µ − τ, (0, 0, 0,−3µ + τ)(ℓ), 0, 0, 0, 0, 1 − µτ, 0, 0, 0,−1
)
,

z′ℓ := value
(
−µ, 0, 0, 0, µ − τ, (0, 0, 0,−3µ + τ)(ℓ), 0, 0, 0, 0, 1 − µτ, 0, 0, 0,−1

)
,

(4)

where (0, 0, 0,−3µ+τ)(ℓ) means that this four-digit block is repeated ℓ times. Then

zℓ ≡ z′ℓ (mod τ4ℓ+13). All D-optimal expansions of zℓ are given by

(
(0, 0, 0, 3 − µτ)(ℓ2), 0, 0, µ − τ, (0, 0, 0,−3µ + τ)(ℓ1), 0, 0, 0, 0, 1 − µτ, 0, 0, 0,−1

)
,
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where ℓ1 and ℓ2 are nonnegative integers summing up to ℓ. There is only one D-

optimal expansion of z′ℓ, it is given by

(
(0, 0, 0,−3 + µτ)(ℓ+1), 0, 0, 0, 0,−3µ + τ, 0, 0, 1 + µτ

)
.

Note that the D-optimal expansion of z′ℓ has Hamming weight ℓ+3, whereas the

D-w-NAF of z′ℓ given in (4) has Hamming weight ℓ+4. The proof of this Proposition

is based on the search of shortest paths in an auxiliary automaton.

2.3 Syntactic Sufficient Conditions

The aim of this section is to prove sufficient conditions for families of sets D to be

a w-NADS at the level of digits of the τ -NAF. In contrast to Theorem 1, where a

decision can be made for any concrete set D, we will now focus on families of such

sets. Blake, Murty, and Xu [6] gave such sufficient conditions based on the norm of

the numbers involved.

Proposition 2. Let w ≥ 1 and ε, ε′ two τ -NAFs. Then value(ε) ≡ value(ε′)
(mod τw) if and only if

εj = ε′j for 0 ≤ j ≤ w − 2 and |εw−1| = |ε′w−1| . (5)

The proof is contained in Appendix B.

Definition 3. Let w be a positive integer and D be a subset of

{ 0 } ∪ { value(ε) : ε is a τ -NAF of length at most w with ε0 6= 0 }

consisting of 0 and a reduced residue system modulo τw. Then D is called a set of

short τ -NAF representatives for τw.

By Proposition 2, an example for a set of short τ -NAF representatives is

D = { 0 } ∪
{

value(ε) : ε is a τ -NAF of length at most w

with ε0 6= 0 and εw−1 ∈ {0, ε0}
}

.
(6)

All other sets of short τ -NAF representatives are obtained by changing the signs

of εw−1 without changing ε0 in some of the ε. It is easy to check that the cardinality

of D is indeed 1 + 2w−1.

The main result of this section is the following theorem, which states that in

almost all cases, a set of short τ -NAF representatives is a w-NADS:

Theorem 3. Let w be a positive integer and D a set of short τ -NAF representatives.

Then D is a w-NADS if and only if it is not listed in Table 1. In particular, if w ≥ 4,

then D is a w-NADS.

The proof of this theorem is contained in Appendix C.
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µ D Remark

−1 {1,−1,−τ 2 + 1,−τ 2 − 1} (−τ − 1)
`

1− τ 3
´

= −τ 2 + 1
−1 {1,−1,−τ 2 + 1, τ 2 − 1} (−τ − 1)

`

1− τ 3
´

= −τ 2 + 1
−1 {1,−1, τ 2 + 1, τ 2 − 1} (τ + 1)

`

1− τ 3
´

= τ 2 − 1
1 {1,−1,−τ 2 + 1, τ 2 − 1} (−τ + 1)

`

1− τ 6
´

=
`

−τ 2 + 1
´

τ 3 + τ 2 − 1

Table 1. List of sets of short τ -NAF representatives which are not a w-NADS. The remark column

contains an example of an element which cannot be represented.

Theorem 4. Let w ≥ 2 be a positive integer, D a set of short τ -NAF representatives,

and ε a D-w-NAF of some z ∈ Z[τ ].
Then the length of ε can be bounded by

2 log2 |z| − w − 0.18829 < length(ε) < 2 log2 |z| + 7.08685 , if w ≥ 4 , (7)

2 log2 |z| − 2.61267 < length(ε) < 2 log2 |z| + 5.01498 , if w = 3 , (8)

2 log2 |z| − 0.54627 < length(ε) < 2 log2 |z| + 3.51559 , if w = 2 . (9)

Note that (9) is Solinas’ [21] Equation (53). The proof of this Theorem uses (among

other things) methods from [21]. It can be found in Appendix D.

2.4 Point Halving

For any given point P , point halving [10, 18, 19] consists in computing a point Q
such that 2Q = P . This inverse operation to point doubling applies to all elliptic

curves over binary fields. Its evaluation is faster than that of a doubling and a halve-

and-add scalar multiplication algorithm based on halving instead of doubling can be

devised. This method is not useful for Koblitz curves because halving is slower than

a Frobenius operation.

In [2] it is proposed to insert a halving in the “τ -and-add” method to speed up

Koblitz curve scalar multiplication. This approach brings a non-negligible speedup

and was further refined in [4], where the insertion of a halving was implicitly inter-

preted as a digit set extension. This interpretation is the following: Inserting a halv-

ing in the scalar multiplication is equivalent to adding ±τ̄ to the digit set {0,±1}. In

fact, D = {0,±1,±τ̄} is a valid 3-NADS. By Theorem 3, this is the only 3-NADS

of short τ -NAF representatives for w = 3 and µ = −1. In the following theorem we

shall show that the set of cardinality 1 + 2w−1 defined by D := {0} ∪ {±τ̄k : 0 ≤
k < 2w−2} for w ≥ 2 is a reduced residue system modulo τw. Later we shall dis-

cuss when it is a w-NADS, and we present a “precomputationless” width-w scalar

multiplication algorithm generalising that of [2] that uses the above set.

Theorem 5. Let w ≥ 2. Then D′ := {±τ̄k : 0 ≤ k < 2w−2} is a reduced residue

system modulo τw.

The proof is found in Appendix E.

Theorem 6. Let w ∈ {2, 3, 4, 5, 6} and D := {0} ∪ {±τ̄k : 0 ≤ k < 2w−2}. Then

D is a w-NADS.
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Proof. For every pair (w,µ) the conditions of Theorem 1 have been verified by

heavy symbolic computations.

We conjecture that Theorem 6 holds also for higher values of w, but verifying

this using Theorem 1 seems to be too expensive.

2.5 Comparing the Digit Sets

So far, three digit sets have been studied: the minimal norm representatives, short

NAF representatives, and powers of τ̄ . It is a natural question to ask what are the

relations between these sets.

As Table 2 shows, the minimal norm representatives are exactly the powers of

τ̄ for w ≤ 4. For the same range of w, all digits of these digit sets have a τ -NAF of

length at most w, which implies that they are also digit sets of short NAF represen-

tatives.

If symmetry is required, i.e., if d is a digit, then −d must also be a digit, there

is only one digit set of short NAF representatives for w ≤ 3 by Theorem 3, which

therefore coincides with the digit set of minimal norm representatives and powers

of τ̄ . For w = 4, however, there is also a symmetric digit set of short NAF repre-

sentatives distinct from the digit set of minimal norm representatives and powers of

τ̄ .

For w ≥ 5, the three concepts are different: the lengths of the τ -NAFs of the

powers of τ̄ grow exponentially in w, and the lengths of the some minimal norm

representatives exceed w slightly (at most by 2).

w MNR=Pτ̄ Max τ -NAF length MNR Max τ -NAF length Pτ̄
2 True 1 1
3 True 3 3
4 True 4 4
5 False 6 8
6 False 8 17

Table 2. Comparison between minimal norm representatives, short NAF representatives, and powers

of τ̄ digit sets. “MNR” stands for the minimal norm representatives digit set, whereas “Pτ̄” stands for

the powers of τ̄ . The last two column show the maximum length of the τ -NAFs of the digits.

3 Applications

All digit sets seen so far can be used in a τ -and-add scalar multiplication, where we

first precompute d·P for all d ∈ D\{0} and then we evaluate the scheme
∑

ziτ
i(P );

in fact, only a half of the precomputations usually suffice since in all cases that we

explicitly described the non-zero elements of the digit set come in pairs of elements

of opposite sign.
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The digit set from § 2.3 simplifies the precomputation phase. The digit set from

§ 2.4 allows us to perform precomputations very quickly or to get rid of them com-

pletely. In the next two subsections we shall consider these facts in detail. In § 3.3

we explain how to use digit sets which are not w-NADS when they contain a subset

that is a k-NADS for a smaller k.

3.1 Using the Short-NAF Digit Set

Let us consider here the digit set D defined in (6). With respect to Solinas’ set it

has the advantage of being syntactically defined. If a computer has to work with

different curves, different scalar sizes and thus with different optimal choices for the

window size, the representatives in Solinas’ set must be recomputed – or they must

be retrieved from a set of tables. In some cases, the time to compute representatives

of minimal norm may have to be subsumed in the total scalar multiplication time.

This is not the case with our set. This flexibility is also particularly important for

computer algebra systems.

The scalar needs first to be recoded as a τ -NAF, and the elements of D are as-

sociated to NAFs of length at most w with non-vanishing least significant digit, and

thus to certain odd integers in the interval [−aw, aw] where aw = 2w+1−2(−1)w

3 − 1
(the aw form a generalized Jacobsthal sequence given by the recursion aw = aw−1+
2aw−2 +2). These integers can be used to index the elements in the precomputation

table. We need only to precompute the multiples of the base point by “positive” short

NAFs (i.e. with most significant digit equal to 1) – and the integers are the odd inte-

gers in the interval [0, aw−1] together with the integers congruent to 1 modulo 4 in

[aw−1 +2, aw]. The indexes in the table are then obtained by easy compression. The

precomputed elements for the scalar multiplication loop can thus be retrieved upon

direct reading the τ -NAF, of which we need only to compute the least w significant

places. If the least and the w-th least significant digits of this segment of the τ -NAF

are both non-zero and have different signs, a carry is generated. Therefore the com-

putation of the simple τ -NAF should be interleaved with its parsing for short NAFs.

This can be done in a simple way by straightforward modifications to the algorithms

for the τ -NAF in [20, 21].

3.2 τ -adic Scalar Multiplication with Repeated Halvings

Let w ≥ 2 be an integer and D the digit set defined in § 2.4. Let P be a point on

an elliptic curve and Qj := τ j(2−jP ) for 0 ≤ j < 2w−2 and R := Q2w−2−1. To

compute zP , we have to compute yR for y := τ̄2w−2−1z. Computing a D-w-NAF

of y, this can be done by using the points Qj , 0 ≤ j < 2w−2 as precomputations.

Now, a point halving on an elliptic curve is not only much faster than a point

doubling – with affine coordinates a doubling and an addition have similar timings,

and with other coordinate systems an addition is much slower than the doubling.

But with more traditional digit sets the precomputations always involve at least one

addition per digit set element. Therefore the approach just described with the points

Qj and halvings is already faster than traditional approaches.
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But we can do even better, especially if normal bases are used to represent the

field F2n . Algorithm 2 computes z · P using an expansion y =
∑ℓ

i=0 yiτ
i of the

integer y := τ̄2w−2−1z where the digits yi belong to the digit set introduced in The-

orem 5, i.e. D := {0} ∪ {±τ̄k : 0 ≤ k < 2w−2}.

Algorithm 2. τ -adic Scalar Multiplication with Repeated Halvings

INPUT: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a
, a point P of odd order on

Ea and an expansion y =
Pℓ

i=0
yiτ

i
where yi ∈ D := {±τ̄k : 0 ≤ k < 2w−2} of the integer

y := τ̄ 2
w−2

−1z. Write yi = εiτ̄
ki with ε ∈ {0,±1}.

OUTPUT: z · P

1. ℓk ← max
`

{−1} ∪ {i : zi = ±τ̄k for some k}
´

2. X ← 0

3. for k = 0 to 2w−2 − 1 do

4. if k > 0 then X ← τn−ℓkX , X ← 1

2
X

5. for i = ℓk to 0 do

6. X ← τX

7. if yi = ±τ̄k
then X ← X + εiP

8. return (X)

To explain how it works we introduce some notation. Write yi = εiτ̄
ki with

εi ∈ {0,±1}. We also define

y(k) =
∑

i : 0≤i≤ℓ, yi=±τ̄k

εiτ
i .

Now y =
∑2w−2−1

k=0 y(k)τ̄k and therefore

z · P = τ̄−(2w−2−1)y · P =

(
2w−2−1∑

m=0

y(m)τ̄m

)

τ̄−(2w−2−1) · P

=
2w−2−1∑

m=0

y(m)τ̄m−(2w−2−1) · P =
2w−2−1∑

m=0

(τ

2

)2w−2−1−m
(y(m)) · P

and the last expression is evaluated by a Horner scheme in τ
2 , i.e. by repeated appli-

cations of τ and a point halving, interleaved with additions of y(0) · P , y(1) · P , etc.

The elements y(k) ·P are computed by a τ -and-add loop as usual. To save a memory

register, instead of computing y(k) ·P and then adding it to a partial evaluation of the

Horner scheme, we apply τ to the negative of the length of y(k) (which is 1 + ℓk) to

the intermediate result X and perform the τ -and-add loop to evaluate y(k) · P start-

ing with this X instead of a “clean” zero. In Step 4 there is an optimization already
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present in [2]: n is added to the exponent (since n ≈ ℓk and τn acts like the identity

on the curve) and the operation is also partially fused to the subsequent τ
2 . At the end

of the internal loop the relation X =
∑k

m=0

(
τ
2

)k−m
y(m)P holds, thus proving the

correctness.

Apart from the input, we need only storage for the additional variable X and the

recoding of the scalar. The multiplication of z by τ̄2w−2−1 is an easy operation, and

the negative powers of τ can be easily eliminated by multiplying by a suitable power

of τn, which operates trivially on the points of the curve. Reduction of this scalar by

(τn − 1)/(τ − 1) following Solinas [20, 21] is also necessary.

An issue with Algorithm 2 is that the number of Frobenius operations may in-

crease exponentially with w, since the internal loop is repeated up to 2w−2 times.

This is not a problem if a normal basis is used to represent the field, but may in-

duce a performance penalty with a polynomial basis. A similar problem was faced

by Okeya, Takagi and Vuillaume in [16], and they solved it adapting an idea by Park,

Sim and Lee [17]. The technique consists in keeping a copy R of the point P in nor-

mal basis representation. Instead of computing y(k) ·P by a Horner scheme in τ , the

summands εiτ
i ·P are just added together. The power of the Frobenius is applied to

R before converting the result back to a polynomial basis representation and adding

it to an accumulation variable. According to [7] converting a field element between

the two bases takes about the same time as one polynomial basis multiplication, and

the conversion routines require each a matrix that occupies O(n2) bits of memory.

Algorithm 3 is our realisation of this approach. It is particularly well suited for

context where a polynomial basis is used for a field where the cost of an inversion

is not prohibitive. The routines normal basis and polynomial basis perform the

conversion of coordinates of the points between polynomial and normal bases.

Algorithm 3. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Halvings, for Fast Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: z · P

1. y ← τ̄ 2
w−2

+m−1z

Write y =
Pℓ

i=0
yiτ

i where yi ∈ D := {0} ∪ ±{τ̄k : 0 ≤ k < 2w−2}

Write yi = εiτ̄
ki with εi ∈ {0,±1}

2. R← normal basis(P )

3. Q← 0

4. for k = 0 to 2w−2 − 1

5. if k > 0 then Q← τQ, Q← 1/2Q

6. for i = 0 to ℓ

7. if yi = ±τ̄k
then Q← Q + εi · polynomial basis(τ iR)

8. return Q
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Algorithm 4 is designed for fields with a slow inversion (such a large fields). It

uses inversion-free coordinate systems, and for this purpose, since there is no halving

formula known in such coordinates, a doubling is used. Not only this is not a prob-

lem, since using Projective or López-Dahab coordinates (see [3, § 15.1]) a doubling

followed by an application of τ−1 (which amount to three square root extractions).

is about twice as fast as a mixed-coordinate addition preceded by a basis conver-

sion – therefore the situation is advantageous as the previous one. Furthermore, this

dispenses us with the need of using a modified scalar y.

Algorithm 4. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Doublings, for Slow Inversion

INPUT: P ∈ E(F2n), scalar z
OUTPUT: z · P

1. Write z =
Pℓ

i=0
ziτ

i
where zi ∈ D := {0} ∪ ±{τ̄k : 0 ≤ k < 2w−2}

Write zi = εiτ̄
ki with εi ∈ {0,±1}

2. R← normal basis(P ) [Keep in affine coordinates]

3. Q← 0 [Q is in L«opez-Dahab coodinates]

4. for k = 2w−2 − 1 to 0

5. if k > 0 then Q← τ−1Q, Q← 2 ·Q
ˆ

τ−1
is three square roots

˜

6. for i = 0 to ℓ

7. if zi = ±τ̄k
then Q← Q + εi · polynomial basis(τ iR) [Mixed coordinates]

8. return Q [Convert to affine coordinates]

The digit set D introduced in Theorem 5 may not be a w-NADS for all w. The

technique presented in the next Subsection shows how to save the situation.

3.3 Stepping Down Window Size

Suppose we have a digit set D, and a recoding like Algorithm 1 parametrized by an

integer w, and something is causing the recoding to stop or to enter a loop – our set

is not a w-NADS. For other inputs, and for the digits generated so far, the algorithm

delivers a nice, low density. How can we save it? One possible answer is to lower

the value of the parameter w and settle for a smaller digit set which is a subset of D,

which we know is a w-NADS, for the rest of the computation. We call this operation

stepping down. The resulting recoding may have a slightly higher weight, but the

algorithm is guaranteed to terminate.

Non termination can happen in Algorithm 1 when the set D is not a w-NADS

and the norm of the variable u gets too small in comparison to the chosen digit,

so that it may be that |u| ≤
∣∣∣u−zj

τw

∣∣∣ ≤ |u|+|zj|
2w/2

, i.e. |zj | ≥ |u|(2w/2 − 1). This is

usually caused by the appearance of “large” digits towards the end of the main loop

of the recoding algorithm, and stepping down must then hold until the end of the
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algorithm. Solinas is able to prove termination of his τ -adic w-NAF because his

digits have norm bounded by 4
72w and are minimal representants in their classes. A

large norm or non-minimality of digits are necessary but not sufficient conditions

for non-termination. In fact digit sets with digits of norm larger than 2w can be w-

NADS. For example, the elements in the digit sets in Example 4 have larger norm

and are not all minimal representants, but for w ∈ {2, 3, 4, 5, 7, 8, 9, 10} they form

w-NADS. In all cases we tested, the digit set from § 2.4 is a w-NADS.

Algorithm 5. Windowed Integer Recoding With Termination Guarantee

INPUT: An element z from Z[τ ], a natural number w ≥ 1 and a set of reduced residue systems

D′

k ⊂ D
′

k+1 ⊂ . . .D′

w modulo τk, τk+1, . . ., τw respectively, (1 ≤ k < w) where D′

k ∪ {0} is

a k-NADS.

OUTPUT: A representation z =
Pℓ−1

j=0
zjτ

j
of length ℓ.

1. j ← 0, u← z, v ← w

2. while u 6= 0 do

3. if τ | u then

4. zj ← 0

5. else

6. Let zj ∈ D
′

v s.t. zj ≡ u (mod τv)

7. if ( |zj | ≥ |u|(2
v/2 − 1) AND v > k ) then decrease v and retry:

8. v ← v − 1, go to Step 6

9. u← u− zj , u← u/τ , j ← j + 1

10. ℓ← j

11. return ({zj}
ℓ−1

j=0, ℓ)

Remark 3. There are variants of this algorithm. Instead of checking norms in Step

7 – which can be expensive even if done smartly – we can just ignore the test and

check later if the algorithm has entered in a loop. This can be done by checking if j
has become larger than log2 N(z) plus some small constant, and if this is the case,

we decrease v to k and continue with the guarantee that the recoding will work. In

fact, this is the variant we chose to implement, as a tight bound for log2 N(z) is

always known in the applications, and most random scalars have nearly maximal

norm, hence almost no additional computational costs are involved.

Remark 4. Note that in the digit set from Example 4, the syntactically defined set of

§ 2.3 and the set of Theorem 5 all have the property that each set is contained in the

sets with larger w – hence this enhanced recoding algorithm can be applied.

In our experiments, the recodings done with the different digit sets have similar

length and the average density is, as expected, 1/(w + 1). Stepping down makes

the weight higher, but only in relatively few cases. The highest increase in weight

is about w/2 and there are no changes in the average asymptotic density. Therefore

the new digit sets bring their advantages with de facto no performance penalty.
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3.4 A Performance Remark

Algorithms 2, 3 and 4 all perform a scalar multiplication by 2w−2 − 1 “faster” op-

eration blocks and on average n/(w + 1) “slower” operation blocks. In the first

algorithm (with normal bases) these two block types are given by a halving and an

addition. In the second, resp. third algorithm these two block types are given by a

Frobenius operation and a halving (resp. by an inverse Frobenius and a doubling),

and by a basis conversion followed by an addition. In all cases we have remarked

that the first block costs α times the second, where α ≤ 1/2.

To achieve optimal performance we need to find the minimum of

f(n;α) = α(2w−2 − 1) +
n

w + 1
.

It is a well known fact that the minimum is attained for

ŵ =
2W

(√
2 ln(2)n/α

)

ln 2
− 1

where W is the main branch of Lambert’s omega function. This ŵ can be well ap-

proximated as

log2(n/α) − 2 log2(log2(n/α)) + c

where, asymptotically, c = 3− ln(ln 2)/ ln 2− ln 2/2 and for n/α < 1000 one can

take a slightly larger value, for example c = 10
3 to get a good approximation. The

optimal value of w for the applications is thus the closest integer to ŵ.

The important aspect here is the following: Taking into account the fact that not

only α = O(1), but that in practice α is bounded also from below, and setting w =
log2(n/α)−2 log2(log2(n/α))+O(1) in f(n;α), we easily obtain that f(n;α) =
O(n/ log n). In other words, Algorithms 2, 3 and 4 are instances of sublinear scalar

multiplication algorithms on Koblitz Curves with constant memory consumption.

The method in [5] is interesting theoretically but its practical relevance stil has to be

assessed - the authors warn that the involved constants may be quite large.

Previous algorithms, such as traditional windowed methods with precomputa-

tions, have of course similar complexity but require storage for 2w−2−1 points [20,

21]. The method of [16] has a small memory footprint but works for w = 5 only.

Furthermore, our algorithms perform better than the aforementioned techniques

using precomputations, for the same values of w. In fact, performing the required

precomputations with Solinas’ digit set requires one addition and possibly some

Frobenius operations per precomputed point (there are 2w−2 − 1 of them). In any

case, we replace these operations with much cheaper ones, whereas in Algorithms 3

and 4 the increase in cost associated to the addition in the main loop is relatively

small and the increase in recoding weight is marginal. In fact, we can use also larger

window sizes and better balance performance. Hence it easy to verify that our meth-

ods run faster. An exact performance evaluation lies outside the scope of this paper.
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4 Conclusions

The paper at hand presents several new results about τ -adic recodings.

We characterise digit sets allowing a w-NAF to be computed for all inputs, and

we study several such sets with interesting properties for Koblitz curves.

Solinas’ digit set, characterised by the property that the elements have minimal

norm in their residue classes, is also considered. We present a surprising example

showing that the non adjacency property does not imply minimality of weight, and

enunciate a result implying that optimal expansions cannot be computed by a deter-

ministic finite automaton.

In § 2.3 we introduce a new digit set characterised by syntactic properties. Its

usage is described in § 3.1.

The digit set introduced in § 2.4 together with Algorithms 2, 3 and 4 from § 3.2

permit to perform a “windowed” τ -adic scalar multiplication without requiring stor-

age for precomputed points. The result is potentially ground-breaking for implemen-

tation on restricted devices. In fact, our methods easily perform better than the previ-

ous methods that made use of precomputations. Our method works for all values for

the window size. A thorough performance assessment will be part of future work.
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Appendices

A Proof of Theorem 1

Lemma 1. Let z ∈ V and d ∈ D with d ≡ z (mod τw). Then (z − d)/τk ∈ V .

Proof. By construction, (z − d)/τw is an element of Z[τ ]. We have

√

N

(
z − d

τw

)
=

|z − d|
2w/2

≤ |z| + |d|
2w/2

≤
max{|d|:d∈D}

(2w/2−1)
+ |d|

2w/2
≤ max{|d| : d ∈ D}

(2w/2 − 1)
.

Since N((z − d)/τw) is an integer, we conclude that N((z − d)/τw) ≤ M .

Proof. (Theorem 1) We first assume that D is a w-NADS. Let z = a + bτ be rela-

tively prime to τ and let ε be its D-w-NADS. Obviously, we have 1 ≡ a ≡ z ≡ ε0

(mod τ). Thus, ε0 6= 0 and therefore ε1 = · · · = εw−1 = 0, whence z ≡ ε0

(mod τw). Thus D contains a reduced residue system modulo τw.

Assume that 0 6= z ∈ V . Let ε be the D-w-NADS of z. If ε0 = 0, we set

y = z/τ . Clearly, y ∈ V and (y, z) ∈ A. If ε0 6= 0, we set y = (z − ε0)/τ
w , which

is an element of V by Lemma 1. Again, (y, z) ∈ A. In both cases, a D-w-NAF of

y can be obtained by omitting the last digit(s) of ε. Repeating this finitely often, we

arrive at 0. Using the arcs in reverse order we see that z is reachable from 0.

Conversely, we assume that the two conditions are fulfilled. We first show that

every z ∈ V has a D-w-NAF by induction on the distance from 0 to z in G. Let

z ∈ V . Then there is a y ∈ V with has a smaller distance from 0 than z and is

a predecessor of z in G. By induction, y has a D-w-NAF. Depending on whether



18

z = τwy + d for some nonzero d ∈ D or z = τy, we get a D-w-NAF of z by

appending (0, 0, . . . , 0, d) (w − 1 zeros) or 0 to the D-w-NAF of y.

Next, we prove that all z ∈ Z[τ ] have a D-w-NAF by induction on N(z). Let

z ∈ Z[τ ]. We may assume that N(z) > M and therefore

|z|(2w/2 − 1) > max{|d| : d ∈ D} .

If τ divides z, we set y = z/τ with N(y) = N(z)/2. If τ does not divide z, we have

gcd(z, τ) = 1. Thus there are d ∈ D and y ∈ Z[τ ] with z = τwy + d. We have

√
N(y) =

|z − d|
2w/2

<
|z| + |z|(2w/2 − 1)

2w/2
=
√

N(z) .

Thus we may take a D-w-NAF of y and append 0 or (0, 0, . . . , 0, d) (w − 1 zeros)

respectively to obtain a D-w-NAF of z.

Finally we assume that D \ {0} is a reduced residue system modulo τw and D
is a w-NADS. Assume that some z has two D-w-NAFs ε and η. If z ≡ 0 (mod τ),
we must have ε0 = η0 = 0 and we continue with z/τ . If z 6≡ 0 (mod τ), then we

must have ε0 6= 0 and η0 6= 0, and the w-NAF property implies that εj = ηj = 0
for 1 ≤ j < w. Therefore, we have ε0 ≡ η0 (mod τw), whence ε0 = η0. Thus we

continue with (z − ε0)/τ
w. By induction, we see that ε = η.

B Proof of Proposition 2

Assume first that (5) holds. If εw−1 = ε′w−1, then it is clear that value(ε) ≡ value(ε′)
(mod τw). W.l.o.g., we may now assume that εw−1 = 1 and ε′w−1 = −1. In this

case we have value(ε) − value(ε′) ≡ 2τw−1 ≡ 0 (mod τw) by (2).

To prove the converse direction, we proceed by induction on w. For w = 1, we

note that ε0 ≡ value(ε) ≡ value(ε′) ≡ ε′0 (mod τ) implies |ε0| = |ε′0| since both

least significant digits are elements of {0,±1}. We now consider the case of general

w. Assume that value(ε) ≡ value(ε′) (mod τw). By induction hypothesis, we have

εj = ε′j for 0 ≤ j ≤ w − 3 and |εw−2| = |ε′w−2|.
We first consider the case that εw−2 = ε′w−2. In that case we conclude that

value(ε)−value(ε′) ≡ (εw−1−ε′w−1)τ
w−1 (mod τw), which implies that εw−1 ≡

ε′w−1 (mod τ) and therefore |εw−1| = |ε′w−1|. Thus (5) is proved in this case.

Finally, we consider the case that εw−2 6= ε′w−2. W.l.o.g., we may assume that

εw−2 = 1 and ε′w−2 = −1. Since ε and ε′ are both τ -NAFs, the subsequent dig-

its εw−1 and ε′w−1 must both vanish. But this implies that value(ε) − value(ε′) ≡
2τw−2 ≡ µτw−1 (mod τw), a contradiction. Thus this case cannot occur.

C Proof of Theorem 3

For w ∈ {1, 2}, all choices ofD are those studied in Examples 2 and 3. These turned

out to be w-NADS. For w = 3, there are only the possibilities D = {0, 1,−1,±τ2+
1,±τ2 − 1} for independent signs in front of τ2. Using Theorem 1, these have been

checked and Table 1 has been established based on the results.
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So the only remaining case is that of w ≥ 4. Let z ∈ Z[τ ] be relatively prime to

τ , choose d = value(ε) ∈ D such that d ≡ z (mod τw) and set y = (z − d)/τw.

Denote the τ -NAF of z by η. We set y′ :=
∑

j≥0 ηj+wτ j , i.e., the number created

by truncating the least significant w digits of the τ -NAF of z.

We claim that either y = y′ or y′ is even (i.e. it is a multiple of τ ) and y ∈
{y′, y′± τ̄}. If ηw−1 = 0 then the number formed by the w least significant digits of

η, which is (0 ηw−2 . . . η1 η0)τ , is in D, hence it is d and y = y′. Otherwise ηw = 0
and y′ is even, and from Proposition 2 together with the fact that τ̄ = 2 · τ−1 we see

that y ∈ {y′, y′ ± τ̄}.

Next, we want to show that the length of the τ -NAF of y′ ± τ̄ is at most the

length of the τ -NAF of y′ increased by 3. If we can prove this, since the length of

the τ -NAF of y′ equals the length of the τ -NAF of z decreased by w, we conclude

that the length of the τ -NAF of y is smaller than the length of the τ -NAF of z. From

this it follows that repeatedly choosing d ≡ z (mod τw) in D and replacing z with

(z − d)/τw will eventually terminate with 0 and yield a D-w-NAF of z.

To prove our claim about the length of the τ -NAF of y′ ± τ̄ we study the be-

haviour of even τ -adic NAFs upon addition or subtraction of τ̄ . We therefore con-

sider transducers which compute the τ -NAF of y′ ± τ̄ from the τ -NAF of y′. One

such transducer for the case µ = −1 is shown in Figure 2. The transducer for µ = 1
is similar and has been omitted for space reasons. The labels have been chosen to

represent the carry, and the “τ -point” corresponds to the look-ahead.
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Fig. 2. Transducer for the addition of ±τ̄ for µ = −1. Addition of τ̄ and −τ̄ corresponds to starting

at states 101 and 1̄01̄, respectively.
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They work as follows: Suppose that µ = −1 and that we want to add τ̄ to

(1001̄01̄0)τ = τ6 − τ3 − τ . We start with the state labeled 101. From each state we

go to the next following the edge whose label begins with next digit, and the corre-

sponding output is the part of the label after the | sign. Following the edges with labels

beginning with 0, 1̄, 0, 1̄, 0, 0, 1 (and possibly additional “most significant” zeros un-

til the output becomes composed exclusively by zeros too) we record the outputs

ε, 01̄, ε, 01, 0, 0, ε and 01, corresponding to the number (1000101̄)τ = τ6 + τ2 − 1.

Indeed, (1001̄01̄0)τ +τ̄ = (1000101̄)τ . Transducers can be easily made into explicit

algorithms employing a table look up.

From these transducers, it is easily seen that the length of the τ -NAF of y′ ± τ̄
is at most the length of the τ -NAF of y′ increased by 3. This concludes the proof of

the theorem.

D Proof of Theorem 4

We first consider the case w ≥ 4. By definition of D, every nonzero digit of D
has a τ -NAF of length at most w. Replacing each block (0, . . . , 0, d) of ε by the τ -

NAF of d ∈ D yields a {0,±1}-expansion η of z. By construction, this expansion

η has the following property: if |ηj | = |ηj+1| holds for some j, then the block

(ηj+w, . . . , ηj+1) satisfies the 2-NAF condition, i.e., ηk+1 · ηk = 0 for j + 1 ≤ k ≤
j + w − 1. Furthermore, we have

length(ε) ≤ length(η) ≤ length(ε) + w − 1 . (10)

We now derive a bound for length(η) which is independent of w. To that aim,

we relax the above syntactical condition. More precisely, we only use that

η ∈ L :=
{

θ ∈ {0,±1}N0 : There is no j ∈ N0 such that

|θj| = |θj+1| = |θj+2| = 1 or such that

|θj | = |θj+1| = |θj+3| = |θj+4| = 1
}

.

We denote the maximum and the minimum of the norm of words of L of length d by

NL
max(d) := max{N(value(θ)) : θ ∈ L and length(θ) = d} ,

NL
min(d) := min{N(value(θ)) : θ ∈ L and length(θ) = d} .

Solinas’ [21] estimates (from Lemma 35 to Corollary 51) in the case of the τ -

NAF remain valid for our quantities NL
max(d) and NL

min(d). Thus in our case, Soli-

nas’ Theorem 2 reads
(√

NL
min(d) −

√
NL

max(d)

2d/2 − 1

)2

· 2length(η)−d < N(z) <
NL

max(d)

(2d/2 − 1)2
· 2length(η)

for length(η) > 2d. We calculate that

NL
min(13) = 86 , NL

max(13) = 18288 ,

NL
min(15) = 289 , NL

max(15) = 73850 .
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This yields

2 log2 |z| − 1.18830 < length(η) < 2 log2 |z| + 7.08685 (11)

for length(η) > 30. This bound is present also in Solinas [21, Eq. (53) and § 9], but

it is an unnecessary restriction: If length(η) ≤ 30, we consider τkz for a sufficiently

large integer k and the expansion η′ ∈ L defined by

η′j =

{
0, if j < k,

ηj−k, if j ≥ k,

i.e., η′ is η shifted left by k digits. Since (11) holds for τkz and η′, it also holds for

z and η.

Together with (10), we obtain (7) for w ≥ 4.

To obtain the bound for w = 3, we consider all 3-NADS (by Theorem 3, there are

4 of them). In these concrete cases, the above calculations can be performed directly,

yielding our bound. The case w = 2 is contained in Solinas [21, Equation (53)].

E Proof of Theorem 5

The assertion has already been proved for w = 2 in Example 3, so we assume that

w ≥ 3 in the sequel. We first claim that for w ≥ 3, we have

vτ (τ̄
2w−2 − 1) = w , (12a)

vτ (τ̄
2w−2

+ 1) = 1 , (12b)

where for z ∈ Z[τ ], vτ (z) denotes the maximal integer k such that τk divides z.

Now, (12b) is an immediate consequence of (12a) and the fact that vτ (2) = 1.

For w = 3, we have τ̄2 = µτ3 + 1, which proves (12a) in this case. For w ≥ 4, we

note that vτ (τ̄
2w−2 − 1) = vτ (τ̄2w−3 − 1) + vτ (τ̄2w−3

+ 1) = (w − 1) + 1 = w,
thus (12a) is proved by induction.

Since the unit group of Z[τ ]/τwZ[τ ] has order 2w−1 by Remark 2, the order of

τ̄ modulo τw is a power of 2. By (12a), we have τ̄2k ≡ 1 (mod τw) if and only if

k ≥ w − 2, thus

τ̄ has order 2w−2 modulo τw . (13)

Assume that τ̄ ℓ ≡ −τ̄k (mod τw) for some 0 ≤ k < ℓ < 2w−2. We get

τ̄ ℓ−k ≡ −1 (mod τw). By (13), squaring this congruence shows that 2w−2 divides

2(ℓ− k) < 2w−1, thus (ℓ− k) ∈ {0, 2w−3}. Taking into account (12b), we see that

both cases lead to a contradiction.

Since all elements ofD′ are relatively prime to τw, they are pairwise incongruent

modulo τw and the cardinality of D′ equals 2w−1, the proof is completed.


